

by Richard F. Drushel

(c) 1991 by Richard F. Drushel
All Rights Reserved

Third Printing: February 8th, 1992

 SmartBASIC 1.x program and manual (c) 1991, 1992 by Richard F. Drushel.
All rights reserved. Except for archival purposes by registered users, neither
the SmartBASIC 1.x software nor manual may be copied or redistributed, in any
way you want to imagine, without express written permission of Richard F.
Drushel.

 Seven sample programs (cartwriter, clock, format, hgr2fun, memdump,
squeezer, and unasmhex) are hereby placed into the public domain. Modify them
as you wish; if you make a useful improvement, I'd like to know about it.

 ADAM, ColecoVision, SmartWriter, and SmartBASIC are trademarks of Coleco
Industries, Inc.

 PowerMate is a trademark of Micro Innovations.

 First Printing: August 1st, 1991
 Second Printing: October 17th, 1991
 Third Printing: February 8th, 1992

Facsimile PDF created from the original WordPerfect 5.1 DOS file
May 17th, 2010

by Richard F. Drushel

 iii

 SmartBASIC 1.x User Manual

 TABLE OF CONTENTS

Warranty...v

Forward..vii

Acknowledgements..ix

Statement of Originality..xi

1. What is SmartBASIC 1.x?..1

2. Getting Started with SmartBASIC 1.x......................................5

3. Customizing SmartBASIC 1.x with EDIT.SYS.................................8

4. Sample Programs...10

SmartBASIC 1.x Programming Reference..12

 Bit and Logical Operations...12
 Clocks...13
 Cursor Control...14
 EOS Function Calls...15
 Error Trapping...17
 Memory Management..20
 Miscellaneous..23
 Port I/O...24
 Printers...25
 Program Flow Control...26
 Screen Colors..27
 Serial I/O...28
 Tape and Disk I/O..29
 Text Modes...31
 Text Windows...33

Appendix 1: Writing Relocatable Z80 Assembly Routines......................34

Appendix 2: EOS Functions 0-100..37

Appendix 3: EOS Technical Notes..51

Appendix 4: External Terminal Emulations...................................56

Appendix 5: List of Reserved Words...59

Appendix 6: Memory Maps..60

Index of SmartBASIC 1.x Commands and Functions..............................66

iv

 SmartBASIC 1.x User Manual Warranty v

WARRANTY.

 The medium upon which SmartBASIC 1.x is supplied (either disk or
digital data pack) is warranted to be free from defects at the time of sale,
and for a period of ninety (90) days thereafter. During the warranty period,
defective media will be replaced free of charge to registered users. I
reserve the right to require that the ORIGINAL defective disk or tape be
returned as a condition of the warranty replacement. *REPLACEMENT OF
DEFECTIVE MEDIA IS THE SOLE RECOURSE UNDER THIS WARRANTY*.

 Users must complete, cut out and mail the registration form below.
This registration entitles the user to upgrades of the SmartBASIC 1.x software
at reduced cost. User interest, availability of new hardware specifications,
and bug reports will determine the form of any upgrades or changes to either
the SmartBASIC 1.x software or the manual.

 I have tried my best to insure that the information in the manual is
correct. However, I cannot assume any responsibility for damage caused by
the use of either the SmartBASIC 1.x software or the manual, including
(but not limited to) lost files, lost data, damaged disks or data packs,
and any financial loss caused by the same. The user must assume all risks
associated with the use of SmartBASIC 1.x.

SmartBASIC 1.x REGISTRATION INFORMATION.

Serial Number_________________________Version Number_________________________

Date of Purchase___

Purchased From___

 cut below this line and mail

SmartBASIC 1.x REGISTRATION FORM.

Serial Number_________________________Version Number_________________________

Name___

Address__

City, State, ZIP___

Phone (optional)___

Date of Purchase___

Purchased From___

vi SmartBASIC 1.x User Manual Warranty

 Warranty returns and bug reports should be sent to:

 Richard F. Drushel
 3353 Mayfield Road
 Cleveland Heights, Ohio 44118
 (216) 397-0684

 If you call, *PLEASE* make it between 8:00 P.M. and 12:00 midnight
Eastern time! And please, I am unable to accept collect calls.

 Since I am currently in the final stages of my Ph.D. research, the
probability is high that within the next 18 months I will be moving--where
I do not know. It is fortunate, therefore, that I am active on several
computer bulletin boards. I will respond to E-mail at the following:

 The Trading Post (A-NET) (216) 791-4022 TP39 or RICH DRUSHEL
 The Cleveland ADAM eXchange (216) 883-9355 36
 The Connection BBS (A-NET) (518) 298-4294 TC30 or RICH DRUSHEL
 ADAMlink of Utah (A-NET) (801) 484-5114 AN62 or RICH DRUSHEL
 The Cleveland FreeNet (216) 368-8888 rfd
 The Youngstown FreeNet (216) 742-3072 ad194
 Micro Innovations BBS (703) 264-3908 75

 I can also receive Internet and Bitnet E-mail from anywhere in the
world at my Cleveland FreeNet addresses:

 Internet: rfd@po.CWRU.edu
 Bitnet: rfd%po.CWRU.edu@cunyvm

 SmartBASIC 1.x User Manual Forward vii

FORWARD.

 On 25 December 1984, a Coleco ADAM computer appeared underneath my
father's Christmas tree. ADAM was his first computer; he was a complete
novice to word processors and BASIC programming languages (and to some
extent video games). As a veteran BASIC programmer (MUBASIC for Digital's
PDP-11/34 minicomputer, and MicroSoft BASIC for the IBM-PC), I was naturally
curious about this SmartBASIC, which seemed to be a clone of AppleSoft
for the Apple IIc/e. Going through the "SmartBASIC Programming Manual", we
found a few discrepancies...FLASH didn't work...something seemed to be
wrong with file I/O...column 1 didn't show on the TV screen...the HELLO
program didn't run when we booted the system... Well, it was a hectic day;
maybe with some quiet time to play with it Dad would figure it out...

 After Coleco abandoned the ADAM, Dad joined NIAD. Every month there
were lots of SmartBASIC programs. Lots of them had PEEKs and POKEs and
CALLs...hmm, the manual didn't say much about these commands; well, try it
and see what happens... Most of the programs bombed spectacularly. On my
visits home from school, I spent long hours in front of the ADAM, trying to
figure out why things didn't work they way they were supposed to. Reading a
few NIAD issues, I saw the discussion about R59 versus R80 SmartWriters,
about the later, "improved" version of SmartBASIC 1.0...^R revealed that
Dad's ADAM was an R59, and that he had the original version of SmartBASIC
1.0. The memory map was different, so no wonder all those PEEKs, POKEs and
CALLs didn't work!

 By 1987, Dad was fed up with his ADAM. SmartFiler was useful, but
SmartBASIC was still a mess, SmartWriter kept locking up, and it took too
long to print out anything on that noisy printer. So...he junked it and
bought a Tandy 1000TX. Rather than see his ADAM go into a dumpster, I took
it. "Maybe I can get it to work," I said. And thereby hangs this tale...

 After getting a revised SmartBASIC 1.0 and a new R80 system unit, I
could program the ADAM after a fashion. But I kept trashing directories,
and had only clumsy programs for editing blocks; *EVERYTHING* I wanted to
do either had never been written or was some machine code routine from
another program (that was invariably on the disk or tape that was trashed).
I bought those two indispensable reference guides, "The Hacker's Guide to
ADAM Volume 1" and "Volume 2" by Peter and Ben Hinkle, and slowly some of
the fog began to lift. I wrote a disassembly program and started to dig
into EOS-5. (This task was greatly aided by an IBM-based program I wrote
to read ADAM disks and save the data in IBM format; 640K of RAM, 20MB hard
disks and DOS editors were the only way to do it.) I commented the *ENTIRE*
disassembly listing for EOS-5 (as DOS text), found a few bugs in the Hinkle
descriptions, and was just beginning to think about how to publish it, when
we moved. Once at our new house, the ADAMs never got unpacked, and they sat
idle in the attic--I was too busy with my Ph.D. research in biology.

 In January, 1990, I dug out my ADAMs again, and began to work on two
vexing problems in Ben Hinkle's 40-column TEXT patch: the eventual
scrambled fonts, and the ^P lockup. I fixed them, then thought, "Why not

viii SmartBASIC 1.x User Manual Forward

FLASH and INVERSE, too?" So I did it. And then I allowed the control
characters to echo on the screen. By this time I had produced a complete
disassembly listing of SmartBASIC 1.0 and SmartBASIC 2.0, and was comparing
the source code with Ben Hinkle's descriptions in "The Hacker's Guide to
ADAM Volume 2." I began to consider adding TEXT40 to SmartBASIC as an
option, instead of a substitution for 31-column TEXT. The idea of using
the STORE, RECALL, and SHLOAD entries in the primary command/vector tables
was unattractive, however, since everybody else used them for their own
patches, and it would probably conflict. By mid-February, 1990, I had
figured out how to search a *SECOND* command/vector table, which could
bring the number of possible commands to 128. When TEXT40 worked from this
second command/vector table, I realized that I had the skeleton in place to
do a major rewrite of SmartBASIC 1.0, and add all the programming features
I had always wanted whenever something went wrong!

 I wrote out a list of things I wanted to do: block reads/writes,
screen color control without POKEs, memory management without absolute
addresses, ability to invoke EOS function calls without machine code
subroutines POKEd in. By June, 1990, after a steady effort, most of my
wish list had been implemented. But again circumstances dictated a hiatus
from the project.

 In October, 1990, I bought a Tandy 2800HD laptop for the purpose of
writing my Ph.D. thesis. The internal 2400-baud modem was my gateway to
the Cleveland FreeNet, whose ADAM sig introduced me to a living, coast-to-
coast ADAM community (a great surprise). I discovered that there were
double-sided disk drives, memory expanders, hard drives, clocks, and other
kinds of hardware which had been produced for the ADAM after Coleco
went bankrupt; and I also learned that various spaghetti patches were
required to use this hardware within SmartBASIC. Wouldn't it be nice to
implement drivers for *ALL* this hardware in my enhanced SmartBASIC, by now
called SmartBASIC 1.x?

 And so began the final phase of the project. Using loaned equipment,
software, and technical information, I added support for bigger disk drives,
RAM disks, and even hard disks; I wrote clock drivers, PEEK and POKE access
to *ALL* of ADAM's memory spaces (ROMs and expansion RAMs); and I provided
command-level access to serial ports. The very last thing, of course, was
user documentation and utility programs to install and reconfigure SmartBASIC
1.x.

 The chapters which follow describe how to use the SmartBASIC 1.x
interpreter for programming on the Coleco ADAM computer. Believe me, it
would have been *IMPOSSIBLE* to debug some of the later stages of the
project without having the early commands like TEXT40, BLREAD, and BLWRITE,
and the early functions HEX$ and MOD! I hope that you will find the
SmartBASIC 1.x interpreter as useful in your own programming tasks as I do.

 SmartBASIC 1.x User Manual Acknowledgements ix

ACKNOWLEDGEMENTS: FIRST PRINTING.

 SmartBASIC 1.x would never be what it is today without the assistance of
other members of the ADAM community. I thank George Koczwara, The Cleveland
ADAM eXchange BBS, for kind loans of his "Nibbles & Bits" collection, a 256K
memory expander, and various software. Herman Mason, Jr., The Trading Post
BBS, let me borrow RAM disk software and an Orphanware clock. Both George
and Herman put their Mini Wini hard drive systems at my disposal. Alan
Neeley, ADAMlink of Utah BBS, kindly lent a Dyno-Mite Digitizer/Clock, as well
as several "ADAM Informant" issues containing technical information about the
ADAMlink modem, the Orphanware serial card, and the internal SmartClock.
George Harpster, head of our local users group, Cleveland B.A.S.I.C.,
surprised me with an Orphanware 80-column video unit (instrumental in the
implementation of TEXT80). I am grateful to all the members of B.A.S.I.C.,
who have patiently endured demonstrations of SmartBASIC 1.x as it evolved
month by month.

 The Cleveland FreeNet, run by Case Western Reserve University, has my
thanks for having an ADAM sig (run by Messrs. Koczwara, Mason & Harpster),
because that was how I hooked up with them in the first place. FreeNet was
also my means of acquiring some more ADAM hardware, this time for keeps,
courtesy of Nick Poulos (ADAMlink modem) and Allen Tucholski (Orphanware
serial card and 160K disk drive).

 Steve Major, The ADAM Connection BBS, deserves mention as the source of
my internal SmartClock. Steve and Alan Neeley both provided important
technical information necessary to make SmartBASIC 1.x compatible with the
PowerMate hard drive system.

 Ron Collins, Bart "Zonker" Lynch, Alan Neeley, George Koczwara, and
Herman Mason, Jr. were pressed into service as beta testers of SmartBASIC
1.x. Their comments (and bug reports) have been a big help as this project
has drawn to a close.

 Tony Patterson, the premier ADAM graphics programmer, made some valuable
suggestions about graphical enhancements to SmartBASIC 1.x, and was the
impetus for the current boot screen. He also provided me with PowerPaint,
which I used to make the disk/tape labels.

 A special "Thank You" goes to Herman Mason, Jr., for all the hours he
has spent in chat with me on "The Trading Post" (mostly to the consternation
of Zonker, trying to get through). Those may have been lost programming
hours, but they have not been lost hours.

 Last but not least, my wife, Joan, gets lots of hugs and kisses for
keeping our two daughters, Christina and Elanor, out of the piles of disks
and assembly listings and books.....well, most of the time.

 Richard F. Drushel
 Cleveland Heights, Ohio
 1 August 1991

x SmartBASIC 1.x User Manual Acknowledgements

ACKNOWLEDGEMENTS: SECOND PRINTING.

 Two months of actual usage have uncovered a few bugs in the original
release of SmartBASIC 1.x. My thanks to Ron Mitchell for identifying problems
with external terminal emulation file handling in the BOOT.SYS program, as
well as the first actual testing of the routines to access the MIB2 serial/
parallel board. Special thanks are due to Alan Neeley, ADAMlink of Utah BBS,
for his kind loan of an MIB2 board, enabling me to correct the bugs in the
serial initialization and send routines.

 SmartBASIC 1.x has proved successful beyond my wildest dreams. I thank
Jim Notini of NIAD for his commercial support, as well as all those who have
purchased SmartBASIC 1.x through NIAD. Their interest and feedback are
shaping and making possible future enhancements to SmartBASIC 1.x.

 Richard F. Drushel
 Cleveland Heights, Ohio
 17 October 1991

ACKNOWLEDGEMENTS: THIRD PRINTING.

 A minor bug was found in the unasmhex sample program, which caused
faulty disassembly of some SET and RES instructions. Also, I had neglected to
rename the file in the HELLO program to SB1.x.20Y after making the MIB2
patches (when the interpreter was changed from 20X to 20Y). Both of these
have been corrected. I thank Walt Nagel for pointing out an error in the
description of EOS function 60. I am also grateful to Mark Gordon, Micro
Innovations, for his kind gift of an MIB2 board; I now use it for parallel
printing and as my TEXT80 terminal.

 Richard F. Drushel
 Cleveland Heights, Ohio
 8 February 1992

 SmartBASIC 1.x User Manual Statement of Originality xi

STATEMENT OF ORIGINALITY.

 While the finished SmartBASIC 1.x would not have been possible without
the generous contributions of hardware and technical information from many
kind people in the ADAM community, I wish to state here, for the record, that
SmartBASIC 1.x is the product of my own efforts, intellectual and physical.
I have not pirated anyone's proprietary software, but have used public domain
routines and information (especially from "The Hacker's Guide to ADAM" series
by Peter and Ben Hinkle) where available.

 To lay to rest any doubts, I am *NOT* Dr. Solomon Swift. I have neither
seen, nor met, nor spoken to, nor corresponded with Dr. Swift. SmartBASIC 1.x
is *NOT* a reverse-engineered form of Dr. Swift's GoBASIC interpreter. The
fact is, I never saw a demonstration of GoBASIC until SmartBASIC 1.x was
nearly completed. In a couple instances, there are some convergences between
GoBASIC and SmartBASIC 1.x (notably the CLS and BEEP commands), but these are
most likely due to a common familiarity with MicroSoft BASIC. The internal
architectures of GoBASIC and SmartBASIC 1.x are totally different. Comparison
of the actual machine code routines above address 27407 reveals markedly
different programming styles, proof of separate authorship.

 I have visited and talked to *IN PERSON* the following members of the
ADAM community: Herman Mason, Jr., George Koczwara, George Harpster, Ron
Collins, Tony Patterson, and Barry Wilson. These people can affirm that I
am indeed *NOT* Dr. Solomon Swift.

 If additional proof of the originality of SmartBASIC 1.x is needed, I
have all the hand-coded, hand-assembled, commented machine code routines for
all the new commands and functions. I hope in the near future to be able to
transfer these manuscripts to word processing files so that printed listings
are available for advanced programmers or the merely skeptical or curious.

 The stories I have been told about the GoDOS/GoBASIC fiasco have made me
anticipate some skepticism toward SmartBASIC 1.x. "Ohhhhh no, not another
GoDOS! Hands on your wallets, everybody!" Considering that the unfulfilled
promises of GoDOS nearly wrecked the ADAM community (I am told), a jaundiced
view toward my "one SmartBASIC accesses all" project is perhaps under-
standable.

 I hope, however, as you read through the manual, try out the sample
programs, and begin to write your own programs, that you realize I have not
promised anything that isn't really *THERE*.

xii

 SmartBASIC 1.x User Manual Chapter 1 1

CHAPTER 1: WHAT IS SmartBASIC 1.x?

 SmartBASIC 1.x is a major rewrite of the SmartBASIC 1.0 interpreter for
the Coleco ADAM computer. SmartBASIC 1.x provides the programmer with 40 new
commands and 38 functions, and enhances the operation of 7 existing commands
and 6 functions. SmartBASIC 1.x allows the programmer *COMPLETE* access to
the hardware and software capabilities of the ADAM, using simple, high-level
commands--without arbitrary PEEKs, POKEs, or CALLs, and without the programmer
needing to understand Z80 machine language.

 SmartBASIC 1.x makes it easy to:

* read and write absolute disk/tape blocks
* change screen colors
* select 31, 40, or 80-column TEXT, complete with FLASH and INVERSE
* define a scrolling TEXT window smaller than the physical screen
* manage interpreter memory independent of absolute addresses
* print to a parallel printer
* initialize and communicate through serial ports
* access all system RAM, ROM, and expansion RAM
* invoke EOS operating system functions without machine language subroutines
* use larger disk drives, including hard drives
* format floppy disks for any size drive
* keep time and date with hardware and software clocks
* communicate directly with Z80 I/O ports

 Additionally, SmartBASIC 1.x fixes some annoying bugs and oversights in
SmartBASIC 1.0:

* parameters are range-checked for all commands and functions
* repeated error trapping does not crash the system
* ERRNUM returns rational error codes
* the keyboard line buffer is 254 characters long instead of 128
* control characters echo on the screen when typed
* INSERT and DELETE keys replace ^N and ^O
* the cursor is hidden unless waiting for typed input
* LIST does not pad everything with extra spaces
* LIST starts printing in column 2, so you can edit line numbers above 9999
* the parser error reprint of a bad line starts in column 2
* SmartBASIC 2.0-type parser errors--beep/sadface replacement of bad line
* POS and VPOS are 1-based instead of 0-based, and return absolute positions
* dummy arguments are not required for ERRNUM, POS, VPOS, FRE, and RND
* color commands and functions use TI color codes instead of AppleSoft
* RANDOMIZE command gives true random numbers (seeds optional)
* RESTORE, RESUME, and RETURN to any line number
* values set by SPEED, ROT, etc. can be found without PEEKs
* multiple programs can be MERGEd in memory

 SmartBASIC 1.x provides shorthand synonyms for a few common commands:

2 SmartBASIC 1.x User Manual Chapter 1

* LOCATE line, column instead of VTAB line: HTAB column
* BEEP instead of PRINT CHR$(7);
* PUT x instead of PRINT CHR$(x);
* CLS instead of HOME

 Lastly, SmartBASIC 1.x implements directly a few "miscellaneous" command
and functions which previously could be achieved only by multi-statement,
multi-line subroutines:

* WHILE...WEND loops
* HEX$(x) to return INT(x) as a hexadecimal string
* Z80-type bit test/set/clear functions
* Z80-type logical AND/OR/XOR/CPL functions
* MOD function to return remainder after integer division
* SPC$(x) function to return a string of x spaces
* STRING$(count,value) to make a string of count CHR$(value)'s.
* LINPUT command to get a whole line of text up to the CR, ignoring commas

 All the enhancements of SmartBASIC 1.x take a little over 8K of extra
RAM, leaving more than 17K of programming workspace. While this is, of
course, less than SmartBASIC 1.0, the compactness of SmartBASIC 1.x commands
and functions means that whole subroutines in older programs can be replaced
by a statement or two.

 Existing programs which may use some SmartBASIC 1.x reserved words as
variable names can be safely loaded and edited, without loss of "incompatible"
lines, thanks to the use of the SmartBASIC 2.0-type parser error handler. In
SmartBASIC 1.0, if the disk/tape file has a syntax error in it, the offending
line is *THROWN AWAY* and it cannot be edited. In SmartBASIC 2.0, parser
errors which occur during a LOAD or keyboard entry are *SAVED* with a beep/
sadface after the line number; such programs when RUN will stop at the
offending line with a "Syntax Error." The beep/sadface is ignored by the line
editor, so once the line is corrected, it disappears. I have implemented this
type of parser in SmartBASIC 1.x; when an existing program is LOADed, any
incompatibilities will be displayed when the program is RUN.

 Any existing SmartBASIC 1.0 or SmartBASIC 2.0 program will work under
SmartBASIC 1.x, *WITH THE FOLLOWING CAVEATS*:

* Programs which use PEEKs and POKEs to access interpreter parameters will
probably work, *IF* the program was written for SmartBASIC 1.0. In a miracle
of programming, I have left the commonly-used POKEs for SmartBASIC 1.0 screen
color in the same place; but these should be changed to the appropriate
COLOR(n)= statements, for compatibility with future versions of SmartBASIC 1.x
WHICH MAY NOT BE TIED TO THE 1.0 MEMORY MAP--HINT HINT. POKEs to change the
prompt are unnecessary, since the PROMPT= command will do it. POKEs to hide
the cursor are unnecessary as well, since it is now displayed only when
waiting for keyboard input. In general, SmartBASIC 1.x provides access
to interpreter parameters independent of their actual location in memory.

* A SmartBASIC 2.0 program which PEEKs and POKEs at interpreter parameters

 SmartBASIC 1.x User Manual Chapter 1 3

will fail, due to the vast memory map differences between SmartBASIC 1.x and
SmartBASIC 2.0.

* Programs which POKE in a machine code subroutine into the area between
address 27407 (SmartBASIC 1.0's LOMEM) and SmartBASIC 1.x's LOMEM (given by
the MEM(0) function) will *BOMB* spectacularly, since that workspace is
used by SmartBASIC 1.x. Similarly, attempts to allocate disk buffers, etc.
in this area will also cause problems. There are 2 alternatives: (1) recode
the routine according to the principles described in Appendix 1: Writing
Relocatable Z80 Assembly Language Routines, and move it to an area above
MEM(0); or (2) translate the routine into equivalent SmartBASIC 1.x
statements. Most machine code routines in the SmartBASIC programs I have
seen are for disk/tape block reads/writes. A few make EOS function calls to
check device status. Some are specialty programs which bank switch to a ROM
and copy the contents back to RAM. BLREAD/BLWRITE, CALL EOS(n), and the
enhanced PEEK(address,latch) and POKE(address,value,latch) commands are the
proper equivalents in SmartBASIC 1.x. In general, only utility-type programs
should present a significant difficulty in this regard.

* SmartBASIC 1.x does not alter the EOS RAM (57344-65535) in any way. The
data area at 64864-65535 is common to both EOS-5 and EOS-7. PEEKs and POKEs
to this data area will work. Beware of drivers for hard disks and RAM disks;
these change the EOS code segment (usually overwriting sound routines).

* Programs with CALLs are a knotty problem. If the CALL is to a POKEd-in
machine code routine, then the difficulties are as described above. CALLs
to SmartBASIC 1.0 interpreter routines may or may not work, depending upon
the routine CALLed and whether it is to an area of the interpreter which has
been rewritten. CALLs to SmartBASIC 2.0 interpreter routines will fail
because of memory map differences. Direct CALLs to EOS are rare, since
almost all EOS calls require a register setup. CALL 64803 (read VDP register
8) has been used to restart non-maskable interrupts after disabling by a user
routine. CALL 64743 (go to SmartWriter) is another common CALL. These will
work, because SmartBASIC 1.x does not modify EOS in any way. Hard drive and
RAMdisk users beware...the drivers modify EOS code.

* Programs which use HTAB and VTAB to specify cursor position, or use POS
and VPOS to return the current cursor position, may require minor editing.
All cursor position commands in SmartBASIC 1.x are 1-based, and access
absolute locations on the screen. In SmartBASIC 1.0 and 2.0, HTAB/VTAB are
1-based, but POS/VPOS are 0-based; and screen coordinates are relative to
the text window. For example, the GR/HGR text window occupies absolute
screen lines 21 to 24. With the cursor at the top left corner of this window,
VPOS(dummy) in SmartBASIC 1.0 returns 0, while VPOS in SmartBASIC 1.x returns
21. VTAB 4 in SmartBASIC 1.0 puts the cursor on screen line 24, while the
same command in SmartBASIC 1.x gives an "Illegal Quantity" error. There is
also no parameter checking for these commands in SmartBASIC 1.0, so attempts
to HTAB 0 or VTAB 25 will fail in SmartBASIC 1.x. This is usually a problem
only for programs which calculate the argument and don't consider the boundary
cases.

4 SmartBASIC 1.x User Manual Chapter 1

 SmartBASIC 1.x has been carefully designed to support most of the
third-party hardware available for the ADAM. The only absolute hardware
requirements, however, are an R80 ADAM system unit, a tape drive, and a TV.
Earlier versions of the system unit, like the original R59, have design bugs
which cause problems when bank-switching memory (required for hardware clocks
and the enhanced PEEK/POKE commands) or connecting third-party hardware (my
R59 locks up when I try to access an Orphanware serial card via the SERIAL
command). To determine the version of your system unit, boot to ADAM's
Electronic Typewriter, then type Control-R. A blue box will appear for
SmartKey IV which says Rxx, where xx is a 2-digit number. SmartBASIC 1.x
was developed on an R80 ADAM and tested on an R59. I have been told that
there are R77s as well, though I have never seen one personally.

 The following hardware is supported directly by SmartBASIC 1.x:

* Coleco ADAMlink modem (initialization only)
* Coleco 64K memory expander (and clones by Orphanware and OPA)
* Orphanware 256K and 512K memory expanders
* Micro Innovations 1024K memory expander
* Orphanware PIA2 parallel board (and clones)
* Eve/Orphanware RS-232C serial board (all 4 possible ports)
* Micro Innovations MIB2 dual serial/parallel board
* Eve SS/SC board (clock only)
* Orphanware clock board
* Trisyd SmartClocks ("no-slot" and Dyno-Mite digitizer versions)
* Eve/Orphanware 80-column video unit
* 320K, 360K, and 720K double-sided disk drives
* Non-256K tapes created by the MegaCopy tape formatter
* Mini Wini hard drive
* PowerMate hard drive

 The following hardware is not supported directly by SmartBASIC 1.x,
but may be accessed using the appropriate IN variable,port and OUT port,value
commands. Existing programs which access these devices may require extensive
rewriting to avoid memory conflicts:

* Coleco ADAMlink modem (dialing and data transfer)
* Coleco Autodialer
* Eve SS/SC board (speech synthesizer)
* MIDI interface board
* Dyno-Mite sound digitizer

 Commercial RAMdisk driver software for expansion RAM does not conflict
with SmartBASIC 1.x, since the drivers are installed to EOS RAM. However,
RAMdisk software is usually part of a patched SmartBASIC 1.0 interpreter.
SmartBASIC 1.x does not implement its own RAMdisk drivers; to access a RAM
disk under SmartBASIC 1.x, you must first boot the patched SmartBASIC 1.0
(installing the RAMdisk drivers), then boot SmartBASIC 1.x. Details are
presented in Chapter 2: Getting Started With SmartBASIC 1.x.

 SmartBASIC 1.x User Manual Chapter 2 5

CHAPTER 2: GETTING STARTED WITH SmartBASIC 1.x.

 SmartBASIC 1.x is supplied on disk or digital data pack. To run Smart-
BASIC 1.x, put the disk or tape in any drive, and pull the reset switch. A
boot screen will be displayed while the interpreter loads. (This takes a
while, especially from tape drives, so do not be alarmed if nothing seems
to be happening right away.) After printing a copyright message, SmartBASIC
1.x asks you to enter the time and date. At last, you are given the familiar
] prompt. You are now in SmartBASIC 1.x!

 Type CATALOG to verify that the following files are present:

 Volume: SB1.x

 *H SB1.x.20Y 36 ;the SmartBASIC 1.x interpreter
 *0 BOOTSB1x20 1 ;boot block for hard drive systems (smiley face)
 *A BOOT.SYS 5 ;reads CONFIG.SYS at startup and configures system
 *A CONFIG.SYS 1 ;configuration data file; supplied with defaults
 *A EDIT.SYS 18 ;configuration editor; creates/changes CONFIG.SYS
 *A DFAULT.SYS 1 ;writes original default values to CONFIG.SYS
 *A HELLO 1 ;boots SB1.x if you booted another BASICPGM first
 *A cartwriter 3 ;game cartridge copy utility
 *A clock 1 ;displays time and date using WHILE-WEND loops
 *A format 1 ;format disks; same logic as internal FORMAT command
 *A hgr2fun 1 ;shows use of 16 TI colors in hi-res graphics
 *A memdump 1 ;dumps out any ADAM memory space (RAM or ROM)
 *A squeezer 4 ;disk/tape squeeze utility
 *A unasmhex 14 ;Z80 unassembler utility

 Your first task should be to make a working copy of the master disk/tape.
If you do not have a formatted disk at hand, you may make one by putting an
unformatted disk in either disk drive and typing FORMAT drive where drive is
either 5 (D5, disk 1) or 6 (D6, disk 2). You may use any public domain or
commercial file copying program, such as File Manager to make backup copies,
if you wish. However, in order to make the copies bootable, you will have to
use the BLOCK COPY option to copy block 0 from the master to block 0 of the
copy.

 Next, you should customize SmartBASIC 1.x for the hardware you have
attached to your system. Make a list of your hardware, being careful to
note such items as port/baudrate/parity/stop for serial cards, disk drive
sizes, and emulation for serial terminal. Then RUN EDIT.SYS, the SmartBASIC
1.x configuration editor program. Work your way through the menus, then save
the new configuration. (See Chapter 3: Customizing SmartBASIC 1.x with
EDIT.SYS for more information.) If you make a mistake, you can always abort
out of EDIT.SYS without saving any changes, then restart.

 You must reboot SmartBASIC 1.x in order to invoke the new configuration.
Put the newly-configured disk/tape in any drive and pull the reset switch.
SmartBASIC 1.x will now be tailored to *YOUR* system!

6 SmartBASIC 1.x User Manual Chapter 2

 In SmartBASIC 1.0 and 2.0, any A-type program file named HELLO will be
automatically run whenever the system boots up. In SmartBASIC 1.x, any A-
type program file named HELLO1.x has the same property. You can thus write
"turnkey" or menu programs, or use existing HELLO programs with SmartBASIC
1.x. Just be sure, however, that your old HELLO program is not full of PEEKs,
POKEs, and CALLs which are incompatible with SmartBASIC 1.x...

 SmartBASIC 1.x does not include RAMdisk drivers. If, however, a RAMdisk
driver has already been installed into EOS, SmartBASIC 1.x can access it as
D7. The Walters Software RAMdisk, for example, is part of a custom-patched
BASICPGM (the binary SmartBASIC interpreter), and is invoked when that patched
SmartBASIC is booted. To use the Walters-type RAMdisk from SmartBASIC 1.x,
you must first boot the patched BASICPGM (pulling the reset switch with that
disk/tape in the drive). When you are asked to initialize the RAMdisk, do so.
You will then exit to a] SmartBASIC prompt. At this point, put in the
SmartBASIC 1.x disk/tape and type RUN HELLO. This will BRUN the SmartBASIC 1.x
interpreter, and go through the same startup sequence as if you booted
directly from the master (although there is no "ADAM presents SMARTBASIC 1.x"
boot screen). When you again reach the] prompt, D7 will access the RAMdisk.

 You may use a file copying utility to make a self-booting SmartBASIC 1.x
with RAMdisk by copying the SmartBASIC 1.x files onto a disk/tape which
already has the RAMdisk-patched BASICPGM and standard SmartBASIC boot block 0
on it. When you pull the reset, BASICPGM will load, the patches will install
the RAMdisk, and then the turnkey HELLO program will automatically load in
SmartBASIC 1.x. Note that this will take twice as long as booting either
the patched BASICPGM or SmartBASIC 1.x alone.

 Hard drive users have a few kinks in the setup procedure. To install
SmartBASIC 1.x on your hard drive, use File Manager to copy all the program
files from the master disk/tape (or better yet, a backup of the master) to
whatever EOS volume you want to keep them on. Next, you must copy the
BOOTSB1x20 boot block file to EOS volume 0. This file has the smiley face
(^B) as the filetype; as supplied, however, the system and read-only attribute
bits are *NOT* set (this is so that the file will show up on a SmartBASIC
CATALOG). You will have to set these attribute bits in order for the program
to boot. At this point, reboot the hard drive (Shift-Undo), set the current
EOS volume to the one where you copied the SmartBASIC 1.x program files, then
boot the BOOTSB1.x file from volume 0. Once you get to the] prompt, D2 will
reference the current EOS volume on the hard drive, but no others. (Note the
] prompt instead of 2x> where x is the current hard drive volume.) Now you
must RUN EDIT.SYS, select the proper hard drive type from the menu (Mini Wini
or PowerMate), then save the new configuration. The next time you boot
SmartBASIC 1.x, the proper hard drive patches will be installed, and you will
be able to access all EOS volumes of your hard drive. You will also have the
2x> prompt.

 Note: BOOT.SYS, EDIT.SYS, DFAULT.SYS, and HELLO are SmartBASIC 1.x
program files. They are not copy or LIST protected in any way; you may LOAD
them and LIST them to see what they do. Since they are system programs,
however, NOBREAK statements are used at the beginning of each to prevent

 SmartBASIC 1.x User Manual Chapter 2 7

uncontrolled escapes with ^C. This is not to discourage the curious; it is
simply to prevent system crashes at boot time or while copying files or while
changing the configuration. Additionally, all system programs check to see
that they are indeed running under the correct version of SmartBASIC 1.x. If
they are run from SmartBASIC 1.0 or 2.0, or from a different version of the
SmartBASIC 1.x interpreter than they were originally distributed with, an
"INCORRECT SB1.x VERSION" error is given and the program aborts.

8 SmartBASIC 1.x User Manual Chapter 3

CHAPTER 3: CUSTOMIZING SmartBASIC 1.x WITH EDIT.SYS.

 EDIT.SYS is a menu-driven program to change the configuration data stored
in the CONFIG.SYS file. This file is read at startup by the BOOT.SYS program,
and the data therein used to set important system parameters like the size of
disk drives, which serial ports (if any) are to be turned on (and with what
initialization parameters), whether you have a serial or parallel printer, the
emulation to be used for the TEXT80 serial terminal, the type of real-time
clock installed, etc. The reason for a separate configuration program,
requiring input from you, as opposed to an auto-sensing, auto-configuring
SmartBASIC 1.x, is simply SPACE. The machine code routines necessary to seek
out and identify all possible types of hardware connected to your ADAM take up
an enormous amount of RAM, RAM that is better put to use by YOU for YOUR own
programs. Once you have your system configured properly, if you don't change
your setup, you may never have to use EDIT.SYS again.

 EDIT.SYS has many levels of menus, all SmartKey-driven. SmartKey VI,
Escape, and ^C always return you to the previous menu level. The remaining
SmartKeys are used to select configuration options. Type RUN EDIT.SYS at
any] prompt, and you will see the main menu:

 SMARTBASIC 1.x CONFIGURATION EDITOR

 Master Configuration Menu

 I Hardware Clock
 II Screen Colors
 III Drive Parameters
 IV TEXT/Printers
 V Serial Ports

 VI Exit

 Press the SmartKey of Your Choice

The menus and sub-menus are pretty self-explanatory; a summary of each main
heading is given below, as a guide to where to go to select what:

 I Hardware Clock. Select which kind of real-time clock you have. The
 default is none (system NMI clock *ONLY*)

 II Screen Colors. Specify foreground and background colors in normal and
 inverse video for the TEXTxx modes; also border color,
 graphics screen color, and the default values for COLOR
 and HCOLOR.

III Drive Parameters. Describe the size of your disk/tape/RAM drives, select
 a hard drive type, specify the number of directory
 blocks to allocate when you INIT a disk/tape.

 IV TEXT/Printers. Pick the default TEXT mode (31/40/80), the printer to be

 SmartBASIC 1.x User Manual Chapter 3 9

 used for ^P screen dumps, and set the line printer width.

 V Serial Ports. Turn serial ports on/off, set port initialization
 parameters, pick ports for serial printer and serial
 terminal, specify TEXT80 terminal emulation.

 VI Exit. Gives you the choice of either reviewing your selections, saving
 the new setup, or aborting without changing anything.

 Note: the file CONFIG.SYS *MUST* be present on the current drive. If it
is missing, EDIT.SYS reports an error and continues using whatever configur-
ation parameters are currently set in memory. If you then save the setup, a
new CONFIG.SYS will be created; but it probably won't be the one which you
were trying to edit in the first place.

 IN CASE OF ERRORS. If you inadvertently saved a bad configuration, or
if CONFIG.SYS is somehow trashed, all is not lost. Simply run the program
DFAULT.SYS. This program, a regular SmartBASIC program (i.e., it will run
under *ANY* version of SmartBASIC), rewrites the original "factory" default
configuration values to CONFIG.SYS. So at least you can get back to where
you originally started. An example: You have a PowerMate hard drive, but
you picked Mini Wini by mistake and saved the configuration. When you try
to reboot SmartBASIC 1.x, it hangs spectacularly (it will; the driver patches
are totally different for the two hard drive types). You can't even get to
the SmartBASIC 1.x prompt to RUN EDIT.SYS again. What do you do? Boot your
original SmartBASIC 1.0 which was already patched to access the hard drive.
Change to the volume where you have the SmartBASIC 1.x program files. Type
RUN DFAULT.SYS. Now you can reboot SmartBASIC 1.x. You will have to rerun
EDIT.SYS to make it work on all the hard drive volumes again, but you will
at least have access to the particular volume where SmartBASIC 1.x is stored
until you save the new configuration. For a disk/tape based system, just do
a variation of the same thing. Boot regular SmartBASIC 1.0, put in the
SmartBASIC 1.x disk/tape, RUN DFAULT.SYS, and you are back to the "factory"
defaults. Rerun EDIT.SYS and save the correct configuration.

10 SmartBASIC 1.x User Manual Sample Programs

CHAPTER 4: SAMPLE PROGRAMS.

 Seven sample programs are included with SmartBASIC 1.x. These programs
illustrate the usage of the enhanced commands and functions. Some of them are
are simple demos, but others are invaluable programmer utilities. A brief
description of each is given below:

 cartwriter Views the contents of any game or program cartridge as
 printable ASCII characters. Also saves any cartridge to
disk or tape, as either a C-type file (compatible with COPYCART by MMSG) or an
H-type file. Since the amount of ROM in a given cartridge is variable, you
should use the view function first, to find where each cartridge ends (you
will see nothing but in the block dump) before you save it.

 clock Continuously displays the system time and date, using the
 WHILE-WEND programming loop structure. Hour, minute, second,
day, weekday, month, and year all roll over.

 format Formats floppy disks in any size disk drive, and initializes
 tapes. You specify the medium size, the number of directory
blocks, and the volume label. This program duplicates the logic of the
internal FORMAT drive command of SmartBASIC 1.x. It also demonstrates the
use of CALL EOS(n) to invoke operating system functions without machine
language programs.

 hgr2fun Uses the default DRAW shape in HGR2 to show all 16 TI colors
 (instead of the 8 AppleSoft colors), available for the first
time *WITHOUT POKES*. The shape bounces back and forth, changing color at
random each time it comes to the screen borders. After a few minutes, all the
color bleeding makes some interesting Jackson Pollock-type pictures. To get
out of it, hit ^C and then type TEXT.

 memdump Displays the contents of *ANY* ADAM memory space as printable
 ASCII characters. This program demonstrates the enhanced
PEEK(address,latch) function. The program can easily be modified to print
the contents in hexadecimal (HEX$(value)) rather than ASCII, and with some
help from the cartwriter program, could even save the contents to disk or
tape.

 squeezer Squeezes unused space out of disks or tapes, putting it all
 in a contiguous block at the end. This program highlights
the BLREAD and BLWRITE commands. To keep it simple, no buffering is done of
the blocks (it reads one, then writes one) This means it will take a long
time to squeeze down a tape! I do *NOT* recommend using this program on a
hard drive, simply because if an error occurs, you will lose of the entire
volume (at least 1024 blocks). (Other volumes will not be affected.)

 unasmhex The most useful SmartBASIC program I have ever written,
 since it made SmartBASIC 1.x itself possible. Unassembles
ANY ADAM memory space into Z80 assembly language instructions. Memory

 SmartBASIC 1.x User Manual Sample Programs 11

contents are given in hexadecimal, but all arguments and addresses are given
in decimal. Target addresses are calculated for relative jump instructions
and given in parentheses at the end of the statement line. If you change all
occurrences of PEEK(address,latch) to PEEK(address), and save the program,
you can use it under SmartBASIC 1.0 and 2.0 as well. I originally wrote it
for SmartBASIC 1.0, and added the latch capability when it became available
in SmartBASIC 1.x. It takes more room on disk than disass by Peter and Ben
Hinkle (14K versus 8K), but unasmhex is much smaller in RAM (disass runs "Out
of Memory" in SmartBASIC 1.x).

 The above sample programs (cartwriter, clock, format, hgr2fun, memdump,
squeezer, and unasmhex) are hereby placed into the public domain. Modify them
as you wish; if you make a useful improvement, I'd like to know about it.

12 SmartBASIC 1.x User Manual Programming Reference

SmartBASIC 1.x PROGRAMMING REFERENCE.

 Related commands and functions are grouped together for easy reference.
A complete alphabetical listing is given in the Index.

BIT AND LOGICAL OPERATIONS.***

x=BIT(value,bit) Tests whether bit (0-7) of value (0-255) is set (logical
 1) or clear (logical 0). Returns either 1 (set) or 0
 clear).

x=SET(value,bit) Returns the result of setting the specified bit (0-7) of
 value (0-255).

x=RES(value,bit) Returns the result of clearing the specified bit (0-7)
 of value (0-255).

x=AND(value1,value2) Returns (value1 AND value2). Both arguments must
 range 0-255.

x=OR(value1,value2) Returns (value1 OR value2). Both arguments must
 range 0-255.

x=XOR(value1,value2) Returns (value1 XOR value2). Both arguments must
 range 0-255.

x=CPL(value) Returns 1's-complement of value (0-255). This exchanges
 all ones and zeros (i.e., 11110000 becomes 00001111).

x=MOD(value1,value2) Returns the remainder after integer division of
 value1 by value2. Equivalent to:

 value1-(INT(value1/value2)*value2)

None of these operations has any effect upon the values of the arguments
(unlike the equivalent Z80 assembly language statements, where, for
example, AND B is effectively A=(A AND B)).

x$=HEX$(value) Returns a string which is INT(value) expressed as a
 hexadecimal number. If value is 0-255, the string is
 2 hex digits, with a leading zero if necessary (e.g.,
 23 decimal=17 hex; 12 decimal=0C hex). If value is
 256-65535, the string is 4 hex digits, again with a
 leading zero if necessary (e.g., 256 decimal=0100 hex).

The bit and logical operations are very useful for interpreting tape and
disk directories. They are much more efficient in terms of speed and
space, compared to the equivalent multi-statement, multi-line subroutines
necessary to implement them otherwise.

 SmartBASIC 1.x User Manual Programming Reference 13

CLOCKS.***

TIME hh:mm:ss Sets the system time: hours (0-23), minutes (0-59) and
 seconds (0-59). Sixtieths of seconds is always reset to
 zero by this command.
x$=TIME$ Returns system time as a string, e.g., "22:13:06".
x=TIME(arg) Returns components of time as numbers:

 0 sixtieth of a second 1 second 2 minute 3 hour

DATE mm\dd\yyyy[\ww] Sets the system date: month (1-12), day (1-31), year
 (1983-2155), and optionally, weekday (1-7, 1=Sunday).
 All values except weekday are stored in EOS RAM at
 64992-64994; hence this date will be stamped upon new
 files. If weekday is not specified, the current value
 is unchanged (default at boot time is 1=Sunday).
x$=DATE$ Returns system date as a string, e.g., "FRI-12-APR-1991".
x=DATE(arg) Returns components of date as numbers:

 0 day 1 month 2 year 3 weekday

 The system clock uses the video NMI (non-maskable interrupt), which
occurs 60 times per second. It has complete date (day and weekday), month
and year rollover, correctly taking into account the lengths of different
months. There is, however, no leap year handler--February is always 28 days
long.

 Due to an intractable bug in SmartBASIC, the video NMI is disabled in
any of the graphics modes (GR, HGR, HGR2). Consequently, the NMI system
clock comes to a halt as long as you are in a graphics mode. When you
reenter a TEXTxx mode, the NMI system clock starts up again. Also, due to
the design of the Z80 microprocessor, any device which uses the system bus
(by exerting an active BUSREQ signal) also disables NMIs for as long as
the device is actively using the bus. This means that tape and disk I/O
will also temporarily stop the NMI system clock. So do not be alarmed if,
after a 2-hour programming session, the system time is 5 or 10 minutes
"behind."

CLREAD Reads the time and date from the hardware clock specified by CLK,
 and sets the NMI system clock to that time and date.
CLWRITE Writes the NMI system clock time and date to a hardware clock
 specified by CLK.
CLK=x Sets the hardware clock to be used by CLREAD/CLWRITE. Currently
 supported values are:

 0 no hardware clock installed 2 TriSyd SmartClock (Dyno-Mite
 1 TriSyd SmartClock (internal) digitizer cartridge)
 3 Eve SS-SC/Orphanware clocks

x=CLK Returns the current clock device used by CLREAD/CLWRITE.

14 SmartBASIC 1.x User Manual Programming Reference

 The default value is CLK=0 (no hardware clock). CLREAD and CLWRITE
commands have no effect on the NMI system clock if CLK=0. If CLK is non-
zero, and you do not have the appropriate hardware clock installed, then
CLREAD and CLWRITE have unpredictable results. Generally, an "I/O Error"
results, but sometimes the NMI system clock (CLREAD) is trashed. This is
not fatal; simply use TIME and DATE to reset it. Be sure to use the
weekday option with DATE, or garbage may remain. CLWRITEing to a non-
existent hardware clock has no effect on the NMI system clock.

 CLREAD correctly interprets hardware clocks operating either in the
12-hour or 24-hour modes; but CLWRITE always uses 24-hour mode. The leap
year indicator of the Eve/Orphanware clocks is ignored.

 Internally, the TriSyd and Eve/Orphanware clocks store the year as a
binary-coded decimal (BCD) number 00 to 99. With the century rollover
approaching, I have thought it useful to interpret the BCD year as follows:
83-99 are 1983-1999, and 0-82 are 2000-2082. This gives almost another 100
years of usefulness to the clock.

 Regardless of the CLK value, TIME, DATE, TIME$ and DATE$ deal ONLY* with
the NMI system clock; these do not access any hardware clocks.

CURSOR CONTROL.***

LOCATE line,column A more compact equivalent to VTAB line: HTAB column.

CLS Same as HOME.

 Both LOCATE and CLS are MicroSoft BASIC commands.

y=VPOS or y=VPOS(dummy) Returns the current cursor line. The dummy argument
 required in SB1.0 and SB2.0 is optional.
x=POS or x=POS(dummy) Returns the current cursor column. The dummy
 argument required in SB1.0 and SB2.0 is optional.

 Both VPOS and POS are 1-based (unlike SB1.0 and SB2.0, where they are
0-based). In addition, VPOS and POS now return the *ABSOLUTE* screen
coordinates, rather than *RELATIVE* screen coordinates. For example, the
text window in GR and HGR (in y,x format) is (21,1) to (24,31). If the
cursor is at the top left corner of that window, VPOS returns 21, *NOT* 0
like it would in SB1.0 and SB2.0. Similarly, to get the cursor to the
top left corner, you must use LOCATE 21,1 (or VTAB 21: HTAB 1), not LOCATE
1,1--if you do, you will get an "Illegal Quantity Error." POS works the
same way.

 SmartBASIC 1.x User Manual Programming Reference 15

EOS FUNCTION CALLS.***

CALL EOS(arg) Directly access the operating system. arg is the number
 of the EOS function desired (0-100), which is simply the
 offset into the EOS jump table divided by 3. Parameters
 are passed and returned via the register variables AF,BC,
 DE,HL,IX, and IY. Call status is returned in the ZF and
 CF status variables (read only).

AF=value Sets AF register for CALL EOS(arg). value is 0-65535.
x=AF Returns value of AF register variable.

BC=value Sets BC register for CALL EOS(arg). value is 0-65535.
x=BC Returns value of BC register variable.

DE=value Sets DE register for CALL EOS(arg). value is 0-65535.
x=DE Returns value of DE register variable.

HL=value Sets HL register for CALL EOS(arg). value is 0-65535.
x=HL Returns value of HL register variable.

IX=value Sets IX register for CALL EOS(arg). value is 0-65535.
x=IX Returns value of IX register variable.

IY=value Sets IY register for CALL EOS(arg). value is 0-65535.
x=IY Returns value of IY register variable.

x=ZF Returns value of ZF (zero flag) status (read only), 0 or 1.
x=CF Returns value of CF (carry flag) status (read only), 0 or 1.

 Note: the register variables will return negative (i.e., 2's complement)
values if between 32768 and 65535. To see the positive form, add 65536.

 These commands eliminate the need for most of the assembly language
routines commonly used in SmartBASIC programs. Set up the register variables
as you would for an assembly language routine, then CALL EOS(arg), then
check the ZF status flag. Note that 2-byte integers are stored lobyte,
hibyte in RAM, so that, for example, to set A=1 and clear all flags,
AF=(1*256)+0 or 0100 hex.

 EOS commonly sets the ZF if the function call was successful, and
clears it if the call failed; if it failed, the A register has an error
code. An easy way to extract this error code is INT(AF/256). Some of the
more esoteric function calls use the CF to return the status of the call.
For a complete listing of all EOS function calls, the register setups they
require, and EOS error codes, see Appendix 2: EOS-5 Function Calls 0-100.
For further technical information about EOS, see Appendix 3: EOS-5
Technical Notes.

 100 & CALL EOS demo
 101 & just a program fragment!

16 SmartBASIC 1.x User Manual Programming Reference

 110 LOMEM:MEM(0)+11+1024: & reserve buffers for filename and data
 120 file$="TESTA"+CHR$(3): & filename
 130 FOR n=1 TO LEN(file$)
 140 POKE MEM(0)+n-1,ASC(MID$(x$,n,1)): & put in filename
 150 NEXT
 160 GOSUB 1000: & create file
..........
 1000 & EOS create file
 1010 AF=4*256: & LD A,4 ;disk 1
 1020 BC=0: & LD BC,0 ;hiword of filesize in bytes
 1030 DE=size*1024: & LD DE,size ;loword of filesize in bytes
 1040 HL=MEM(0): & LD HL,buffer ;address of filename string
 1050 CALL EOS(51): & CALL 64713 ;EOS create file
 1060 IF ZF=1 THEN RETURN: & RET Z ;ok exit
 1070 GOTO 20000: & JP error ;error exit
..........
 20000 & error handler
 20010 BEEP: PRINT "ERROR ";INT(AF/256): & tell me what's wrong
 20020 LOMEM:MEM(0): & clean up
 20030 END

 The register variables AF,BC,DE,HL,IX, and IY may be used as regular
integer variables in SB1.x programs. It is recommended, however, that they
be reserved for use with CALL EOS.

 SmartBASIC 1.x User Manual Programming Reference 17

ERROR TRAPPING.***

RESUME [line number] Returns to the main program after an error-handling
 routine was invoked via ONERR GOTO. If the optional
 line number is omitted, execution resumes at the
 statement at which the error occurred. If the line
 number is used, execution jumps to the first
 statement in the specified line.

x=ERRNUM or x=ERRNUM(dummy) Returns the code of the last error which
 occurred during program execution. The dummy
 argument is optional.

 The error codes returned in SB1.0 and SB2.0 are irrational, presumably
copied from AppleSoft. The interpreter, however, actually uses its own
set, numbered 0 to 35, which is then mapped to the crazy codes. SB1.x uses
this internal set. A few error codes unimplemented in SB1.0 and SB2.0
have been assigned to errors in SB1.x.

SB1.x code error message SB1.0/SB2.0 code
 0 NEXT without FOR 0
 1 Syntax 16
 2 RETURN without GOSUB 22
 3 Out of DATA 42
 4 Illegal Quantity 53
 5 Overflow 69
 6 Out of Memory 77
 7 Stack Overflow 77
 8 Undefined Statement 90
 9 Bad Subscript 107
 10 Redimensioned Array 120
 11 Divide by Zero 133
 12 Type Mismatch 163
 13 String Too Long 176
 14 Formula Too Complex -?-
 15 Undefined Function 224
 16 Incorrect Function Usage -?-
 17 Illegal Mode -?-
 18 INPUT Data --unused--
 19 Break 255
 20 Break 255
 21 Can't Continue -?-
 22 WEND without WHILE --unused--
 23 Range Error 2
 24 Write Protected -?-
 25 End of Data 5
 26 RESUME without ONERR --unused--
 27 File Not Found 7
 28 I/O Error 8
 29 No More Room 9
 30 File Locked 10

18 SmartBASIC 1.x User Manual Programming Reference

 31 Syntax Error 11
 32 No Buffers Available 12
 33 File Type Mismatch 13
 34 Device Timeout --unused--
 35 --unused-- --unused--
 36 Control Buffer Overflow 12

Error notes:

 18 INPUT Data. The only time this error occurs is if you enter a
 string when INPUT is looking for a number, and you are inside an
 error-trapping routine (before a RESUME) which was enabled with ONERR
 GOTO, and an error has occurred. Normally, INPUT responds with
 "?Reenter" when you make this mistake, and you keep going 'til you
 get it right. If ONERR GOTO is enabled, any error causes a branch to
 the specified error-trapping routine; no message is issued for the
 error. Once inside an error-trapping routine, however, in order to
 prevent infinite loops, any subsequent errors which occur (before the
 RESUME) cause a program break and an error message. This is the
 situation which gives rise to error 18. This was not invented by me;
 the whole thing was already there in the interpreter, but with the
 error string set to null (so you would never see a message). All I
 did was to restore a message string.

 19 Break. When ^C is pressed during program execution, an error 19 is
 issued. After cleaning up from the ^C, the error is changed to 20,
 and the program stops.

 20 Break. STOP and END issue error 20 directly; this is to distinguish
 them from a ^C.

 Error handling in SB1.x has been improved so that, if the commands are
used correctly, an infinite number of errors can occur without blowing up
the stack and hanging the system. For a demonstration, try running the
following program under SB1.0 or SB2.0. (Take out all tapes and disks
first!) See how many times it can RESUME before crashing. Then run it
under SB1.x.

 100 & error handling bug demo in SB1.0/SB2.0
 101 & guaranteed to cause a system crash!
 110 n=1: & initialize counter
 120 ONERR GOTO 1000: & enable error trapping
 130 x=4/0: & Division by Zero error
 140 PRINT "You'll never get this far!": & you won't!
 150 END: & only of your system!
 1000 & error trapping routine
 1010 PRINT n;" ";: & tell us how many times
 1020 n=n+1: & one more time
 1030 RESUME: & back for more grief

The state of the WHILE/WEND stack is preserved, as well as the status of any

 SmartBASIC 1.x User Manual Programming Reference 19

FOR/NEXT loops. With RESUME line number, however, be sure not to branch into
the middle of a FOR/NEXT loop or a WHILE/WEND loop, or the system will be
corrupted.

 Never issue CLRERR or another ONERR GOTO while in an error-trapping
routine! Always RESUME somewhere first. Otherwise, the stack will be
destroyed.

20 SmartBASIC 1.x User Manual Programming Reference

MEMORY MANAGEMENT.**

x=MEM(arg) Returns a memory usage address as a 2's-complement integer
 (-32768 to 32767).

arg address
 0 lowest possible LOMEM
 1 current LOMEM
 2 highest possible HIMEM after NEW
 3 current HIMEM

 MEM is provided for the implementation of relocatable assembly language
subroutines and data transfer buffers (for BLREAD/BLWRITE). The programmer
need not know the absolute addresses, but can access them as variables using
arithmetic statements. Properly used, this allows subroutines and buffers to
be allocated without conflict, regardless of the actual memory map of a
particular version of the SB1.x interpreter. For example:

 100 & sample program to copy disk 1 to disk 2
 110 LOMEM:MEM(0)+1024: & reserves a 1K transfer buffer
 120 FOR n=0 to 159
 130 BLREAD 5,n,MEM(0): & reads block n from disk 1
 140 BLWRITE 6,n,MEM(0): & writes the data to disk 2 as block n
 150 NEXT
 160 LOMEM:MEM(0): & restore buffer space to free RAM
 170 END

This example will run correctly, regardless of the absolute value of MEM(0).
For examples of how to make totally relocatable Z80 assembly language
subroutines, see Appendix 1: Writing Relocatable Z80 Assembly Routines.

x=FRE or x=FRE(dummy) Returns the amount of free program memory. The
 dummy argument required in SB1.0 and SB2.0 is
 optional.

x=ADDR(arg) Returns a pointer or vector address as a 2's-complement
 integer (-32768 to 32767).

arg address
 0 default shape table (the square)
 1 current shape table (user-defined)
 2 default USR routine (a RET instruction)
 3 current USR routine (user-defined)
 4 default NMI routine (a RET instruction)
 5 current NMI routine (user-defined)
 6 default TERM emulation pointer table (TTY, Heath 19, 6 External)
 7 current TERM emulation pointer table (user defined)

ADDR(arg)=address Sets a pointer or vector address. address can either
 be an unsigned integer (0 to 65535) or a 2's-complement
 integer (-32768 to 32767). Because of the definitions

 SmartBASIC 1.x User Manual Programming Reference 21

 of the ADDR function, even-numbered args are undefined
 for the ADDR command.

arg address
 1 current shape table
 3 current USR routine
 5 current NMI routine
 7 current TERM emulation pointer table

 DRAW and XDRAW draw the shape at ADDR(1). USR executes the assembly
language routine at ADDR(3). With every NMI, the assembly language routine
at ADDR(5) is executed. (This is useful for continuously reading and
buffering incoming characters from a serial port, for instance.) All Z80
registers except those of the alternate set (AF', BC', DE', HL', IX', and
IY') are PUSHed onto the stack prior to entry, and POPped off after the RET.
The routine *MUST* end in a RET and *MUST* leave the stack in the same
condition it was in on entry! A separate user stack need not be allocated;
but if you do, be sure to save the old SP and restore it before you RET!
There are no other restrictions on what the routine can do, including EOS
function CALLs. ADDR(7) points to a 16-byte table of 2-byte pointers (lobyte,
hibyte), each of which points to a terminal emulation data table for the
appropriate value of TERM in TEXT80 (see Appendix 5: External Terminal
Emulations). This function is provided for applications which might require
multiple internal terminal emulations (such as a communications program).

 When you are finished with your shape table or assembly language
routine, it is good programming practice to restore ADDR to the default
values. For example:

 100 & sample program using ADDR
 110 LOMEM:MEM(0)+100: & reserve space for a 100-byte shape table
 120 x=MEM(0): IF x<0 THEN x=x+65536: & make unsigned integer
 130 x$=",A"+STR$(x): & make address argument for BLOAD
 140 HTAB 1: PRINT CHR$(4);"BLOAD shapetable";x$: & load to address
 150 ADDR(1)=MEM(0): & set new shape table address
 1000 & rest of DRAW/XDRAW program here
........
 10000 & clean up and exit
 10010 ADDR(1)=ADDR(0): & restore default shape table address
 10020 LOMEM:MEM(0): & restore table space to free RAM
 10030 END

x=PEEK(address [,latch]) Returns the byte stored at a memory address.

POKE address,value [,latch] Changes the contents of memory at address
 to value (0-255).

 The optional latch parameter allows you to specify additional ADAM
memory spaces:

22 SmartBASIC 1.x User Manual Programming Reference

latch memory type unique address
 0 standard RAM (same as omitting latch) 0-65535
1-16 expansion RAM banks 1-16 (each 64K) 0-65535
 17 cartridge ROM 32768-65535
 18 OS-7 ROM 0-8191
 19 EOS ROM 24576-32767
 20 SmartWriter ROM 0-32767

 Effectively, the latch parameter causes the specified memory to be bank-
switched in for the PEEK or POKE, then the standard 64K RAM configuration is
restored. If address is not within the unique space of the specified memory,
the address accessed is the same as standard RAM. For example, PEEK(0,17)
returns the same value as PEEK(0) or PEEK(0,0), because the cartridge ROM
begins at 32768.

 There are noticeable performance differences between TEXTxx mode and
graphics modes, when a non-zero latch is used. Specifically, access is faster
in the graphics modes. This is because, in order to avoid problems when bank-
switching memory, SB1.x is dodging the non-maskable interrupts (NMIs) in
TEXTxx modes. This care is not necessary in graphics modes, because NMIs are
disabled.

 On rare occasions, the system may still lock up during one of the bank
switches. System electrical noise is probably the culprit; but the only
solution is to pull the reset button. Original R59 ADAMs and hard drive
systems seem to be more susceptible to this lockup than a stand-alone R80
ADAM. This is a hardware design problem.

 POKEing to a ROM has no effect upon the contents of the ROM.

 SmartBASIC 1.x User Manual Programming Reference 23

MISCELLANEOUS.**

BEEP Equivalent to PRINT CHR$(7). A MicroSoft BASIC command.

x=HDRV Returns the current hard drive type (0=none, 1=Mini Wini, 2=
 PowerMate). This value is set at startup by BOOT.SYS based upon
 the configuration data in CONFIG.SYS. This function is provided
 for the benefit of assembly programmers who wish to write (or need
 to write) device-dependent routines to access hard drives.

LINPUT ["prompt";] var$ [,var2$...] Line input into a string variable.
 All characters up to a carriage
 return are included; commas are
 IGNORED as data separators, but
 are included as part of the string.
 Each string must be less than 256
 characters long. To LINPUT a list
 of strings, each one must be
 terminated by a carriage return.
 If the optional "prompt" is omitted,
 a "?" is used as a default. LINPUT
 may also be used to read text files
 from tape or disk, as long as each
 line ends in a carriage return and
 is not more than 255 characters long.

PROMPT=value Sets the prompt to CHR$(value). value must be 0-255.
x=PROMPT Returns the current ASCII code of the prompt.

 Note: PROMPT has no effect in hard drive systems, since the hard drive
patches use a different routine to display the current drive and volume with
the > prompt.

PUT value Writes value (0-255) to the current PR device. This is the
 complement to GET. In file I/O, you can use this to put
 control codes into the file. You can actually use this to
 copy a binary file; however, before CLOSEing the new file,
 you *MUST* sent a null PRINT statement, or a carriage return,
 in order for SmartBASIC to correctly record the length of the
 file. This is due to intractable bugs in SmartBASIC's (not
 EOS's) file handling routines. Otherwise, PUT value is
 equivalent to PRINT CHR$(value);: (note the semicolon; PUT
 does not force a carriage return).

RANDOMIZE [seed1,seed2] Reseeds the random number generator. If the
 optional seeds are omitted, the current contents
 of the Z80 memory refresh register, R, are used
 as seeds. (This is a reasonably random number.)
 If explicit seed values are used, seed1 and seed2
 must be 0-65535.

24 SmartBASIC 1.x User Manual Programming Reference

x=RND Returns the next random number in the sequence. Equivalent to
 RND(positive argument). This eliminates the need for a dummy
 argument in the most common use of RND.

x=ROT Returns current ROT.

x=SCALE Returns current SCALE.

x$=SPC$(arg) Returns a string consisting of arg spaces (1-255).

x=SPEED Returns current SPEED.

x$=STRING$(count,value) Returns a string consisting of count characters
 of ASCII code value. For example, STRING$(32,5)
 is equivalent to SPC$(5). The ASC function is
 helpful when you can't remember the ASCII code
 for a certain character, e.g., STRING$(ASC("*"),5).

x=VER(0) Returns the version number of SB1.x. Official release versions
 begin at 20; if a lower number appears on your machine, then
 either the interpreter has been corrupted (in RAM or on tape/
 disk) or you have a beta test copy of SB1.x (hopefully not
 pirated).

x=VER(1) Returns the version number of EOS. The ROM version loaded when
 you reset your ADAM is 5. If you boot SB1.x from Disk Manager,
 however, the EOS version is 7. (Disk Manager and SB2.0 are the
 only Coleco programs which use EOS-7, which is supplied as a
 binary file and loaded into RAM, overwriting EOS-5.)

& Equivalent to REM. Explicitly implemented as REM, rather than as a
 USR-like function which ignores all arguments and is just a RET (as in
 SB1.0 and SB2.0).

PORT I/O.***

IN variable,port Reads a byte from the specified Z80 I/O port and stores
 it in variable. port ranges from 0 to 255. variable
 must be numeric (real or integer).
OUT port,value Sends value out the specified port. value must be a
 numeric expression which evaluates to a number less than
 256. Real values are truncated to integers.

 These two commands are exact counterparts to the assembly language IN
and OUT statements, thus removing another need for custom assembly language
routines.

 SmartBASIC 1.x User Manual Programming Reference 25

PRINTERS.***

PR #0 Video screen or serial terminal (depending on TEXTxx).
PR #1 ADAM daisy-wheel printer (with PR #0 echo).
PR #2 Orphanware PIA2 port 64 parallel printer (with PR #0 echo).
PR #3 Serial printer (with PR#0 echo). The default port is 68, though
 it may be changed with the SER(0)= command. The port must be
 initialized with the SERIAL command.
PR #4-7 Currently the same as PR #0.

PRN #arg Selects which printer driver is used for ^P screen dumps. arg
 is the same as in PR #. The corresponding PR # driver does *NOT*
 have to be in effect. This means that you could ^P to a parallel
 printer (PRN #2) while being in screen mode (PR #0).

 All printer output via either PR # or PRN # is checked as to whether the
specified device is on-line or not. If the device does not respond in about
10 seconds, a "Device Timeout Error" results. Serial devices are also
checked for parity, overrun and framing errors. If any of these occur, an
"I/O Error" results. All printer errors cause the current PR # vector to be
reset to PR #0 (screen), whether they are trapped with ONERR GOTO or not.
If an "I/O Error" occurs on a serial device, it *MUST* be reinitialized with
the SERIAL command in order to be accessed again.

PRWIDTH=value Set the column width of the printer.

x=WIDTH(0) Returns current screen width (31, 40, 80)
x=WIDTH(1) Returns current printer width.

 Note: No corresponding WIDTH(arg)= command is provided, since the TEXTxx
commands take care of that for the screen. Hence PRWIDTH= as a command
without a corresponding function.

26 SmartBASIC 1.x User Manual Programming Reference

PROGRAM FLOW CONTROL.***

RESTORE [line number] Sets the DATA/READ pointer. If the optional line
 number argument is omitted, the READ pointer is set
 to the line of the first DATA statement in the
 program. With the line number argument, the READ
 pointer is set to that program line, and READ begins
 at the first DATA statement encountered thereafter.
 The line number referenced need not contain a DATA
 statement.

RETURN [line number] Transfers control back to the main program at the
 end of a subroutine invoked by GOSUB. If the
 optional line number is omitted, then the program
 resumes at the first statement after the GOSUB.
 With the line number argument, control passes to the
 first statement of the specified line. This is
 equivalent to POP: GOTO line number.

WHILE condition... This loop programming structure is more efficient
WEND than IF...GOTOs. On entry, the start of the loop
 is recorded, then subsequent statements are
 executed until a WEND is encountered. The entry
 condition is then tested. If the condition is true,
 control passes back to the beginning of the loop.
 If the condition is false, then the program continues
 with the next statement following the WEND. WHILE/
 WEND loops may be nested up to 10 levels; attempts
 to nest the 11th result in a "Stack Overflow Error."

 100 & sample program illustrating WHILE/WEND
 101 & shows a simple system clock without TIME$
 110 hh=TIME(3): & hours
 120 LOCATE 10,1: PRINT hh;: & show hours
 130 WHILE hh=TIME(3): & hours loop
 140 mm=TIME(2): & minutes
 150 LOCATE 10,5: PRINT mm;: & show minutes
 160 WHILE mm=TIME(2): & minutes loop
 170 ss=TIME(1): & seconds
 180 LOCATE 10,9: PRINT ss;: & show seconds
 190 WHILE ss=TIME(1): & seconds loop
 200 WEND: & end seconds loop
 210 WEND: & end minutes loop
 220 WEND: & end hours loop
 230 GOTO 110: & do it all over again

Programming note: There is a separate stack allocated for WHILE/WEND. For
you hackers out there, do not consider this to be "free space!"

 SmartBASIC 1.x User Manual Programming Reference 27

SCREEN COLORS.**

COLOR(arg)=value Sets the color of screen attributes.
x=COLOR(arg) Returns the color of screen attributes.

 arg value value
 0 COLOR 0 transparent 8 medium red
 1 HCOLOR 1 black 9 light red
 2 border 2 medium green 10 dark yellow
 3 NORMAL foreground 3 light green 11 light yellow
 4 NORMAL background 4 dark blue 12 dark green
 5 INVERSE foreground 5 light blue 13 magenta
 6 INVERSE background 6 dark red 14 grey
 7 GR, HGR, HGR2 graphics screen 7 cyan 15 white

 COLOR(0)= is the same as COLOR=. COLOR(1)= is the same as HCOLOR=.
COLOR= and HCOLOR= are retained for compatibility with existing programs.
It is recommended that future programs use the COLOR(arg)= syntax.

 The AppleSoft color codes have been scrapped. SB1.x uses the Texas
Instruments (TI) color codes required internally by the VDP. PEEKing and
POKEing to set the screen colors is *ABSOLUTELY CONDEMNED*; however, since in
the past these were widely used, those addresses have been left intact (in a
miracle of programming, I might add).

 Unlike SB1.0 and SB2.0, screen color attributes are *NOT* reset by the
mode commands (TEXT, TEXT31, TEXT40, TEXT80, GR, HGR, HGR2). Screen colors
remain in effect until changed by the appropriate COLOR(arg)= command.

 COLOR(2)=, COLOR(5)= and COLOR(6)= have no visible effect in TEXT40, due
to hardware limitations of the VDP. They remain set, however, and will be
displayed in TEXT31, GR, HGR and HGR2.

28 SmartBASIC 1.x User Manual Programming Reference

SERIAL I/O.***

SERIAL port,baudrate,stats Initializes a serial port.

 port baudrate stats
 1 300 0 (E71)
 2 1200 1 (N81)
 68 2400
 76 4800
 84 9600
 92 19200
 94

 Ports 1 and 2 are Micro Innovations MIB2 serial ports. Ports 68, 76, 84
and 92 are Eve/Orphanware serial ports. Port 94 is the ADAMlink modem. If
port 94 is selected, the only valid option for baudrate is 300 (since the
ADAMlink modem can only operate at 300 baud). While at the hardware level,
other combinations of parity, character length and stop bits besides E71 and
N81 are possible, there is no practical use for them, so they are not
supported directly. If desired, they may be programmed using the proper IN
and OUT commands; however, SB1.x will be unaware of the settings.

 Technical note: The MIB2 serial ports 1 and 2 are *NOT* the actual
hardware ports used. The designations "1" and "2" are logical names,
consistent with the nomenclature used in the PowerMate documentation. The
SmartBASIC 1.x interpreter maps these logical names to the appropriate
hardware ports. The numbers of the Orphanware serial ports and the ADAMlink
modem port, however, are the hardware ports.

 Additional note: The MIB2 serial ports are *NOT* identical. Port 1 is
wired as DCE (Data Communications Equipment) while port 2 is wired as DTE
(Data Terminal Equipment). In practical terms, this means that port 1 is
intended for use with a modem, and port 2 with a terminal. If you wish to
use port 2 with a modem, or port 1 with a terminal, you must put a null modem
connector in between the serial cable 25-pin connector and the modem/terminal
25-pin (or possibly 9-pin) connector. Null modems and 25-to-9 pin adaptors
are widely available, e.g., from Radio Shack, for about $5.00 each.

SER(arg)=value Sets the port for either PR #3 (arg=0) or the TEXT80
 serial terminal (arg=1).
x=SER(arg) Returns the serial port used for either PR #3 (arg=0)
 or the TEXT80 serial terminal (arg=1).
x=SER(port,parameter) Returns either the baud rate (parameter=0) or the
 initialization statistics (parameter=1) for port.

 Valid ports are 1, 2, 68, 76, 84, 92 and 94. Stats are returned as 0
(E71) or 1 (N81). If the returned baud rate is zero, then the port has not
been initialized by the SERIAL command.

 SmartBASIC 1.x User Manual Programming Reference 29

TAPE AND DISK I/O.**

BLREAD drive,block,address Reads a 1024-byte block from the drive
 and stores it, beginning at address.
BLWRITE drive, block,address Writes 1024 bytes to the specified block
 of the drive, beginning at address.

drive name EOS device # default block range
 1 TAPE 1 8 0-255
 2 TAPE 2 (or HARD DRIVE) 24 0-255 (tape)
 3 Coleco hard drive prototype 9 0-255
 4 Coleco hard drive prototype 25 0-255
 5 DISK 1 4 0-159
 6 DISK 2 5 0-159
 7 RAM disk 26 0-63

 These are extremely powerful, yet extremely *DANGEROUS* commands. They
obviate one of the more common types of machine-code routine for the ADAM,
and make tape/disk editing, directory untrashing, etc. very easy. However,
you must be sure that transfer buffer has been reserved with LOMEM or HIMEM.
Otherwise, writing to the buffer will corrupt the interpreter, possibly
invoking garbage instructions which will trash your tapes or disks! *YOU HAVE
BEEN WARNED*

DSIZE(arg)=x Sets drive size parameters. For arg=0, x sets the number
 of blocks to be allocated to the directory of a tape/disk
 during INIT. The default value is 1. For arg=1,2,3,4,5,6,
 or 7, sets the volume size in blocks for drive arg during
 INIT to x. x may range from 1-65535, and is *ALWAYS*
 1-based: 256 for tapes, 160 for single-sided disks, etc.
 These values are also used in parameter checking for BLREAD
 and BLWRITE, but in a 0-based form (since the block numbering
 is 0-based).
x=DSIZE(arg) Returns drive size parameters. For arg=0, returns the
 number of directory blocks for INIT. For arg=1,2,3,4,5,6,
 or 7, returns the volume size in blocks for drive arg.

 DSIZE allows you to implement the many third-party mass storage media
which have been developed for the ADAM: 320/360/720K disk drives, hard
drives, small-size tapes formatted using the MegaCopy device, and RAM disks
using expansion memory.

 RAM disks are tricky. The number of blocks available depends both upon
the amount of expansion RAM you have, and the kind of proprietary software
drivers you are using to make the RAM disk. In general, the more expansion
memory, the less of it you are able to use as a RAM disk (1K blocks in each
64K bank must be reserved for inter-bank transfers; these cannot be allocated
for files). You should consult your RAM disk documentation to see how many
blocks are actually available. As a concrete example, one version of the
Walters Software RAMdisk uses physical blocks 0-63 for the 64K memory
expander, but the RAMdisk is only 63 blocks long, because block 0 is used as

30 SmartBASIC 1.x User Manual Programming Reference

an inter-bank buffer. BLREADing block 0 returns the same block as BLREADing
block 1. This means that, for INIT purposes, DSIZE(7) must be 63; but for
BLREAD/BLWRITE, DSIZE(7) must be 64 (otherwise attempts to access block 63
will result in an "Illegal Quantity Error"). The default for DSIZE(7) is 64,
for the 64K memory expander.

 Hard drive users wishing to INIT a particular EOS volume may do so
by setting DSIZE(2) to the appropriate size (1024, 2048 or whatever), then
using INIT name,D2,Vn where Vn is the number of the desired volume. It does
not matter that the various partitions may be of different sizes; as long as
DSIZE(2) has the correct volume size, the INIT will be successful.

 DSIZE parameters stay the same until you change them! So if you set
DSIZE(0)=2, every drive you INIT will allocate 2 blocks to the directory.

FORMAT drive Formats the disk in drive and INITs it to the size currently
 given by DSIZE(drive).

 The only valid values for drive are 5 (disk 1, D5) and 6 (disk 2, D6).
FORMAT will *NOT* format tape drives, hard drives, or RAM disks. The default
volume label "SB1.x" is used for the INIT; if you wish to change the label,
or if you find that DSIZE(drive) had the wrong value (e.g., you wanted to
format a 160K disk in a 320K drive, but forgot to set DSIZE(5) to 160, so you
got a 320K disk instead), you can fix the DSIZE and then use the standard INIT
command; the low-level formatting will still be okay.

 FORMAT invokes the built-in formatting function stored in the disk drive
controller EPROM. This causes the drive to low-level format the disk using
all read/write heads available, regardless of the current value of
DSIZE(drive). If you make a 160k disk (single-sided) in a 320K drive (double-
sided), the disk is actually being formatted on both sides as a 320K. The
INIT function of SmartBASIC 1.x is what makes it a 160K disk. Consequently,
it is impossible to format flippy disks (2x160K) in a double-sided 320K drive:
as soon as you flip the disk over, the FORMAT attempt destroys the data on the
other side.

MERGE Modifies the LOAD command so that subsequent programs are
 combined with the program already in memory. In the case of
 identical line numbers, the LOADed program line replaces the
 line in memory.
NOMERGE Restores the default LOAD command, so that the program in
 memory is completely erased before the new program is LOADed.

 MERGE remains in effect until cancelled by NOMERGE, and vice versa.
To avoid problems, the following sequence is recommended:

 LOAD 1st.prog ;source program
 MERGE ;enable MERGE
 LOAD 2nd.prog ;overlay 2nd program
 NOMERGE ;restore original LOAD

 SmartBASIC 1.x User Manual Programming Reference 31

TEXT MODES.***

TEXT31 Selects 31-column video text mode (the default).
TEXT40 Selects 40-column video text mode.
TEXT80 Selects 80-column serial terminal text mode.
TEXT Selects either 31-, 40- or 80-column text mode, depending upon
 whether TEXT31, TEXT40 or TEXT80 was the last text mode command.

 For ease in adapting existing programs to SB1.x, TEXT31/40/80 needs only
to be given once. Subsequent TEXT commands will invoke the last width set;
graphics commands do not affect the text width. So you don't have to hunt
down and change every TEXT in the program. Put the desired TEXTxx at the
beginning and every subsequent TEXT will be just like the TEXTxx.

 FLASH and INVERSE work in TEXT40, but border and separate inverse colors
cannot be displayed due to hardware limitations of the VDP.

 TEXT80 uses the serial port given by SER(1), which must have been
previously initialized to proper baud rate, etc. with the SERIAL command. If
the specified serial port does not exist, or has not been initialized, TEXT80
returns to TEXT40 and reports "I/O Error." If the specified serial port is
valid, then the TV screen blanks and goes into TEXT31 mode, and all screen
printing is directed to the terminal. The particular terminal emulation used
is specified by TERM. TEXT80 is intended for use with the ADAM keyboard
ONLY. The extent to which FLASH and INVERSE are implemented in TEXT80
depends upon the capabilities of the specific terminal emulation.

 You may move freely between all text and graphics modes, in any order.
Regardless of whether TEXT80 is the active TEXT mode or not, all text displays
in GR and HGR are in the 4-line window at the bottom of the graphics screen.
For example, going to GR from TEXT80 causes the blank TV screen (TEXT80 mode)
to become GR, and no printing or typing echoes to the serial terminal. (If
you use a composite color/monochrome monitor for both TV and serial terminal
outputs, you might find a video-source switch very handy.)

 In order for TEXT80 to function correctly, you must configure your
terminal (either by DIP switches or software commands) to the following:

 1. Proper baud rate, parity, and stop bits (to match parameters in
 CONFIG.SYS).
 2. No line feeds after carriage returns.
 3. No forced carriage return/line feed after printing in column 80.

Double-spaced screen lines are a good indication that settings for (2) and
(3) are incorrect. The editing keys will *NOT* function properly if the
display screen does not match the internal screen character map. For the
Orphanware 80CVU, set DIP switch 2, #8 to ON (no LF after CR) and DIP switch
3, #8 to ON (wraparound mode disabled). You will have to reset the unit for
these switches to take effect.

 WINDOW is not available in TEXT80.

32 SmartBASIC 1.x User Manual Programming Reference

TERM=x Specifies the terminal emulation to be used in TEXT80. Currently
 supported values are:

 0 Dumb TTY 4 ADDS Regent 200
 1 Heath 19 5 Falco (may work for TeleVideo)
 2 ADM-3A 6 -unassigned-
 3 Beehive 7 External (user-supplied)

x=TERM Returns the current TEXT80 serial terminal emulation.

 TTY and Heath 19 emulations are stored internally in the SmartBASIC 1.x
interpreter; they are always available simply setting TERM=0 or TERM=1. An
internal data area is reserved for *ONE* additional emulation (one of 2-7),
which must be specified in CONFIG.SYS (by using the EDIT.SYS program) and
installed at startup. Values 2-7 for TERM all point to this internal data
area. If an extra emulation is installed, BOOT.SYS will correctly set TERM
to the proper value (e.g., 2 for ADM-3A), but if you change TERM=3 (Beehive),
you still have the ADM-3A emulation. If no extra emulation is installed,
TERM values 2-7 default to Dumb TTY.

 TTY is *VERY* dumb; the only control codes supported are carriage return
and line feed. The remaining emulations are all "smart"--full arrow key
editing, INSERT, DELETE, ^L (clear screen), control-arrow keys, HOME, ^V
(erase to end of line) and ^X (cancel line or erase to bottom of screen) are
supported. Heath 19, ADM-3A, Beehive, and Falco support INVERSE video; ADDS
Regent 200 does not. Although none of the terminals listed support FLASHing
video, I have substituted the control codes for INVERSE video to work for
FLASH as well, so that FLASH will at least give an inverse video display.

 The External emulation is a user-created, BLOADable data file containing
the control character information for an additional terminal emulation. For
detailed information about the creating additional terminal emulations, see
Appendix 5: External Terminal Emulations.

 NOTE: ASCII characters below 32 and above 127 are handled by the
emulator routine. If the character is not one of the "emulatables", it is
changed to a space (32) when it is printed on the terminal. This is for
place-holding purposes when editing a program which has embedded Coleco
graphics characters (like the sadface for parser error lines). If you pass
the cursor over one of these "spaces", however, a space is substituted for the
original control character in the program. This is not a problem for fixing
parser errors (the sadface is ignored anyway when you edit the line), but for
programs which have explicit ^Ds inside quote marks, it may cause some
difficulties. LISTing, LOADing, MERGEing, and SAVEing a program with internal
control characters is NOT AFFECTED by TEXT80. Only if you edit one such line.
Similarly, control characters typed in at the keyboard while in TEXT80 are
translated to spaces on the screen (unlike TEXT31 or TEXT40, where you can see
them as graphics characters).

 SmartBASIC 1.x User Manual Programming Reference 33

TEXT WINDOWS.***

WINDOW y1,x1 TO y2,x2 Defines a scrolling text window in TEXT31 and TEXT40
 ONLY. y1,x1 are the line and column of the upper
 left corner of the window. y2,x2 are the line and
 column of the lower right corner of the window.

 WINDOW is *NOT* available in TEXT80.

 It is possible to LOCATE/HTAB/VTAB outside the boundaries of the window
in order to PRINT or PUT. Any characters displayed outside the window will
not be scrolled or erased by CLS/HOME/^L. The window remains in effect until
a screen mode command is issued.

 If your program stops with the cursor outside the window, you may notice
a few strange things on the screen. You may move the cursor anywhere you like
with the arrow keys, but once you get back inside the window, you cannot use
the arrows to move out of it again. TEXT or any other screen mode command
will reset it. I'm *PRETTY* sure you can't hang the system by playing around
outside the window, but...

 The safest practice is, when PRINTing outside the window, to always
PRINT with the semicolon to suppress the automatic carriage return. Then
make sure you LOCATE/HTAB/VTAB back inside the window. Try to avoid
carriage returns outside the window.

34 SmartBASIC 1.x User Manual Appendix 1

APPENDIX 1: WRITING RELOCATABLE Z80 ASSEMBLY ROUTINES.

 A primary goal of SmartBASIC 1.x has been to free the programmer from
the need to know the absolute addresses of interpreter-specific parameters,
such as the current LOMEM and HIMEM, the location of the default shape table,
etc., and instead to allow the programmer to make use of this information
through high-level commands. For example, it is more universal to use
x=SPEED than x=PEEK(16129), especially since 16129 works only in SmartBASIC
1.0--in SmartBASIC 2.0 it is 1628.

 User-supplied assembly language routines, however, present a problem.
While the MEM functions can be used to make the *START* of a code block
relocatable (e.g., LOMEM:MEM(0)+100 to reserve 100 bytes, then CALL MEM(0) to
access it), and relative jumps (e.g., JR +25) and indexing commands (e.g.,
LD (IX+5),A) can be employed, most routines still have absolute addresses in
them. This is unavoidable because the Z80 (unlike, for instance, the 8086
family) has no way to specify a CALL or LD address relative to the current
instruction. Z80 code is thus not completely relocatable (able to be loaded
anywhere in RAM and still execute correctly).

 Z80 routines supplied as part of a SmartBASIC program, however, can be
"helped" so that they are *IN EFFECT* relocatable. To show how this may be
accomplished, consider the following assembly program:

;Sample Program: Deletes a file, then prints a message on the screen
;
DELETE EQU 64737 ;EOS delete file
PRINT EQU 12110 ;SmartBASIC 1.0 print table
DISK1 EQU 4 ;device number of disk 1
;
START: LD A,DISK1 ;device number 62,4
 LD HL,FILE ;filename string address 33,xxx,xxx
 CALL DELETE ;delete the file 205,225,252
 JR NZ,ERROR ;failed 32,7
 LD HL,STR1 ;ok; get message string address 33,xxx,xxx
EXIT: CALL PRINT ;print the message 205,78,47
 RET ;back to SmartBASIC 201
;
ERROR: LD HL,STR2 ;error message string address 33,xxx,xxx
 JR EXIT ;print it and exit 24,247
;
FILE: DB "filename99A",3
STR1: DB 14,"File Deleted",13,10
STR2: DB 21,"Error Deleting File",13,10

 The values of DELETE, PRINT, FILE, STR1, and STR2 are absolute; the
values of EXIT and ERROR are relative. Furthermore, DELETE and PRINT must
be the same value wherever the program is loaded, while FILE, STR1, and
STR2 will change depending upon the load address. Note that, wherever the
program is loaded, the offset of FILE, STR1, and STR2 relative to the start
of the routine *IS AN ABSOLUTE NUMBER*:

 SmartBASIC 1.x User Manual Appendix 1 35

 FILE: offset 22
 STR1: offset 34
 STR2: offset 49

 This provides the key to making the routine fully relocatable. First,
reserve space for the routine:

 100 LOMEM:MEM(0)+71: start=MEM(0)

 The value of MEM(0) will be the start address for the routine. Now
POKE the machine code and data into RAM:

 110 FOR n=start to start+70: READ x: POKE n,x: NEXT

 Wherever there occur absolute addresses which need to be made
relocatable, replace these with zeros in the DATA statements (just as place
holders):

 120 DATA 62,4,33,0,0,205,225,252,32,7,33,0,0,205,78,47,201,33,0,0,24,247
..........rest of data omitted

 Now you must calculate the "missing" addresses. Referring to the
assembled machine code, note that:

 label value occurrence
 FILE start+22 4th-5th bytes
 STR1 start+34 12th-13th bytes
 STR2 start+49 19th-20th bytes

 Finally, translate this into SmartBASIC statements:

 150 file=start+22
 160 str1=start+34
 170 str2=start+49
 180 POKE start+4,MOD(file,256): POKE start+5,INT(file/256)
 190 POKE start+12,MOD(str1,256): POKE start+13,INT(str1/256)
 200 POKE start+19,MOD(str2,256): POKE start+20,INT(str2/256)

 To access the routine, simply CALL start.

 Essentially, this entire procedure is a mini linker. It duplicates
the conversion of object code to the final executable memory image. As long
as it is done accurately, the resulting machine code should run correctly
regardless of what the current LOMEM is. Of course, LOMEM should not be
changed while the routine is in use. (Remember that LOMEM erases all
current variables.)

 The example provided is somewhat frivolous, since CALL EOS(59) after
appropriate setup of AF and HL could be used to bypass assembly language
altogether. However, it clearly demonstrates the method. It is *STRONGLY
RECOMMENDED* that *ALL* user-supplied assembly language routines in

36 SmartBASIC 1.x User Manual Appendix 1

SmartBASIC 1.x be written to be relocatable, using the memory usage
parameters returned by the MEM function as base addresses. *UNDER NO
CIRCUMSTANCES SHOULD ABSOLUTE ADDRESSES BE USED IN LOMEM AND HIMEM
COMMANDS*.

 SmartBASIC 1.x User Manual Appendix 2 37

APPENDIX 2: EOS-5 FUNCTIONS 0-100.

 Function names are taken (with modification) from "The Hacker's Guide to
 ADAM Volume I" by Peter and Ben Hinkle (1986). Function descriptions
 are the result of my own disassembly of EOS-5 and EOS-7, and are
 reproduced from "The EOS-5 Technical Reference" by Richard F. Drushel
 (1991). For additional information and abbreviations, see Appendix 3:
 EOS-5 Technical Notes.

number description jump table address
 0 EOS START/INITIALIZATION 64560
 1 CONSOLE DISPLAY OF NON-CONTROL CHAR (in A) 64563
 2 CONSOLE INITIALIZATION 64566
 3 DISPLAY CHAR (in A) ON SCREEN (CTRL OR NOT) 64569
 4 DELAY AFTER HARD RESET 64572
 5 END PRINT BUFFER (at HL) 64575
 6 END PRINT CHARACTER (in A) 64578
 7 END READ 1 BLOCK 64581
 8 END READ CHARACTER DEVICE (in A) 64584
 9 END READ KEYBOARD 64587
 10 END WRITE 1 BLOCK 64590
 11 END WRITE CHARACTER DEVICE (in A) 64593
 12 FIND DCB 64596
 13 GET DCB ADDRESS (in IY) 64599
 14 GET PCB ADDRESS (in IY) 64602
 15 HARD INITIALIZATION (COLD BOOT) 64605
 16 HARD RESET ADAMnet 64608
 17 PRINT BUFFER (at HL) 64611
 18 PRINT CHARACTER (in A) 64614
 19 READ 1 BLOCK 64617
 20 READ KEYBOARD 64620
 21 READ KEYBOARD STATUS BYTE 64623
 22 READ PRINTER STATUS BYTE 64626
 23 READ DEVICE (in A) STATUS BYTE 64629
 24 READ TAPE STATUS BYTE 64632
 25 RELOCATE PCB (to HL) 64635
 26 REQUEST DEVICE (in A) STATUS 64638
 27 REQUEST KEYBOARD STATUS 64641
 28 REQUEST PRINTER STATUS 64644
 29 REQUEST TAPE STATUS 64647
 30 SCAN ADAMnet FOR DEVICES 64650
 31 SOFT INITIALIZATION (WARM BOOT) 64653
 32 SOFT RESET DEVICE (in A) 64656
 33 SOFT RESET KEYBOARD 64659
 34 SOFT RESET PRINTER 64662
 35 SOFT RESET TAPE 64665
 36 START PRINT BUFFER (at HL) 64668
 37 START PRINT CHARACTER (in A) 64671
 38 START READ 1 BLOCK 64674
 39 START READ CHARACTER DEVICE (in A) 64677
 40 START READ KEYBOARD 64680

38 SmartBASIC 1.x User Manual Appendix 2

 41 START WRITE 1 BLOCK 64683
 42 START WRITE CHARACTER DEVICE (in A) 64686
 43 SYNCHRONIZE Z80A AND MASTER 6801 CLOCKS 64689
 44 WRITE 1 BLOCK 64692
 45 WRITE CHARACTER DEVICE (in A) 64695
 46 INITIALIZE FILE MANAGER 64698
 47 INITIALIZE DIRECTORY 64701
 48 OPEN FILE 64704
 49 CLOSE FILE 64707
 50 RESET FILE 64710
 51 CREATE FILE 64713
 52 FIND FILE (WITH TYPE) 64716
 53 UPDATE DIRECTORY ENTRY 64719
 54 READ FILE 64722
 55 WRITE FILE 64725
 56 SET CURRENT DATE 64728
 57 GET CURRENT DATE 64731
 58 RENAME FILE 64734
 59 DELETE FILE 64737
 60 READ DEVICE (in A) NODE TYPE 64740
 61 GO TO SmartWriter 64743
 62 READ EOS [not implemented in EOS-5] 64746
 63 TRIM FILE 64749
 64 CHECK IF FILE IS OPEN 64752
 65 READ BLOCK 64755
 66 WRITE BLOCK 64758
 67 CHECK FILE I/O MODE 64761
 68 READ DIRECTORY FOR FILE 64764
 69 FIND FILE (NO TYPE) 64767
 70 POSITION FILE [not implemented in EOS-5] 64770
 71 EOS1 [not implemented in EOS-5] 64773
 72 EOS2 [not implemented in EOS-5] 64776
 73 EOS3 [not implemented in EOS-5] 64779
 74 INCORRECT EOS VERSION ERROR 64782
 75 GET I/O PORTS FROM OS-7 64785
 76 BANK SWITCH MEMORY (to A) 64788
 77 PUT ASCII CHARACTER PATTERN TO VDP 64791
 78 WRITE VRAM 64794
 79 READ VRAM 64797
 80 WRITE VDP REGISTER 0-7 64800
 81 READ VDP REGISTER 8 64803
 82 FILL VRAM WITH 1 CHARACTER (in A) 64806
 83 INITIALIZE VRAM TABLE 64809
 84 PUT TABLE TO VRAM 64812
 85 GET TABLE FROM VRAM 64815
 86 CALCULATE OFFSET INTO SPRITE ATTRIB TABLE 64818
 87 POINT TO PATTERN POSITION 64821
 88 LOAD ASCII CHARACTER SET FROM ROM TO VDP 64824
 89 WRITE VRAM SPRITE ATTRIBUTE TABLE 64827
 90 READ GAME CONTROLLERS 64830
 91 UPDATE SPINNER 1 AND 2 64833

 SmartBASIC 1.x User Manual Appendix 2 39

 92 DECREMENT LOW NIBBLE OF (HL) 64836
 93 DECREMENT HIGH NIBBLE OF (HL) 64839
 94 HIGH NIBBLE OF (HL) TO LOW NIBBLE 64842
 95 ADD A TO WORD AT HL 64845
 96 SOUND INITIALIZATION 64848
 97 SOUND OFF 64851
 98 START SONG 64854
 99 SOUND 64857
100 END SPECIAL EFFECTS NOTE 64860

**
EOS Function 0: EOS START/INITIALIZATION.
 This routine is jumped to by a powerup boot program located in page 0 of
 the SmartWriter ROM. (When the Z80A CPU is reset, the program counter is
 forced to 0000, and execution begins there. ADAM is hardwired so that
 this accesses the SmartWriter ROM.) On entry, 8K of EOS have already
 been copied from the EOS ROM to the upper 32K of RAM (starting at 57344).
 The EOS ROM is still switched in as the lower 32K. Function 0 sets up
 the EOS stack, moves up the EOS data tables by 1 byte (why I don't know),
 sets the revision number byte to 5, gets the I/O ports from OS-7, turns
 off the sound, fills all 16K of VRAM with zeroes, then bank switches the
 lower 32K to RAM. After further setup, it tries to load a bootstrap
 program from either disk (1, then 2) or tape (1, then 2). If a boot is
 successfully loaded, the routine jumps to it at 51200; otherwise, the
 routine jumps to Function 61 (go to SmartWriter). Note that tape 1 and
 tape 2 share the same DCB, and the node type byte of the tape DCB shows
 whether tape 2 is available (hex 03) or not (hex 33).
**
EOS Function 1: CONSOLE DISPLAY OF NON-CONTROL CHARACTER (in A).
 On entry, A=character to display. Performs line wraparound and screen
 scroll up if necessary. Note: This routine is not used by SmartBASIC,
 though its own routine is almost identical.
**
EOS Function 2: CONSOLE INITIALIZATION.
 On entry, B=number of columns (X) for screen, C=number of lines (Y), D=
 column of upper left corner (X-min), E=line of upper left column (Y-min),
 HL=VRAM address of name table. Note: This routine is not used by
 SmartBASIC, though its own routine is almost identical.
**
EOS Function 3: DISPLAY CHARACTER OR CONTROL CHARACTER ON SCREEN.
 On entry, character to display is in A. If the character is ^\ (28),
 D=column, E=line to quickmove the cursor to. Note: This routine is
 not used by SmartBASIC, though its own routine is almost identical.
 The control character handling routines, however, are different.
**
EOS Function 4: DELAY AFTER HARD RESET.
 This do-nothing loop seem unnecessarily complicated, but its complexity
 is probably due to its history. The necessary delay time was probably
 determined empirically, and this programming structure allows loops of
 varying lengths to be constructed simply by changing B and DE.

40 SmartBASIC 1.x User Manual Appendix 2

**
EOS Function 5: END PRINT BUFFER (at HL).
 On exit, if end was successful, ZF=1. If not, ZF=0 and CF reflects
 various error conditions. CF=0 if not done printing, CF=1 if done but
 I/O error (code in A).
**
EOS Function 6: END PRINT CHARACTER (in A).
 On exit, if end was successful, ZF=1. If not, ZF=0 and CF reflects
 various error conditions. CF=0 if not done printing, CF=1 if done but
 I/O error (code in A).
**
EOS Function 7: END READ 1 BLOCK.
 On entry, A=device number. On exit, CF=1 if the I/O attempt has ended,
 with ZF=1 for ended successfully, ZF=0 for I/O error. If I/O is still
 in progress, CF=0. Error codes in A may be 1=NON-EXISTENT DEVICE, 3=
 I/O NOT DONE. (Exit from bit 7 clear test has A=0, which usually means
 OK.)
**
EOS Function 8: END READ CHARACTER DEVICE (in A).
 On entry, A=device number. On exit, CF=1 if the I/O attempt has ended,
 with ZF=1 for ended successfully, ZF=0 for I/O error. If I/O is still
 in progress, CF=0. Error codes in A may be 1=NON-EXISTENT DEVICE, 3=
 I/O NOT DONE. (Exit from bit 7 clear test has A=0, which usually means
 OK.)
**
EOS Function 9: END READ KEYBOARD.
 On exit, if end was successful, ZF=1 and A=character typed. Otherwise,
 ZF=0 and CF reflects various error conditions. CF=0 if not done reading,
 CF=1 if done but I/O error (code in A).
**
EOS Function 10: END WRITE 1 BLOCK.
 On entry, A=device number. On exit, CF=1 if the I/O attempt has ended,
 with ZF=1 if successful, ZF=0 for I/O error. If I/O is still in progress,
 CF=0. Error codes in A may be 1=NON-EXISTENT DEVICE, 3=I/O NOT DONE.
 (Exit from bit 7 clear test has A=0, which usually means OK.)
**
EOS Function 11: END WRITE CHARACTER DEVICE (in A).
 On entry, A=device number. On exit, CF=1 if the I/O attempt has ended,
 with ZF=1 for ended successfully, ZF=0 for I/O error. If I/O is still
 in progress, CF=0. Error codes in A may be 1=NON-EXISTENT DEVICE, 3=
 I/O NOT DONE. (Exit from bit 7 clear test has A=0, which usually means
 OK.)
**
EOS Functions 12/13: FIND/GET DCB ADDRESS (in IY).
 On entry, A=device number. On exit, if the device exists, ZF=1, A=device
 number and IY=DCB address. Otherwise, ZF=0 and A=1 (NON-EXISTENT DEVICE
 error).
**
EOS Function 14: GET PCB ADDRESS (in IY).
 On exit, IY=current PCB address.

 SmartBASIC 1.x User Manual Appendix 2 41

**
EOS Function 15: HARD INITIALIZATION (COLD BOOT).
 Current PCB address is set to 65216. After a hard reset of ADAMnet, the
 old PCB and DCBs are wiped out by being moved up 1 byte from 65216-65535
 to 65217-65536. The Z80A and master 6801 clocks are synchronized, and
 ADAMnet is scanned for devices, creating new DCBs as active devices are
 found.
**
EOS Function 16: HARD RESET ADAMnet.
 Sends 15 out the reset port (63), waits a bit, then sends 0.
**
EOS Function 17: PRINT BUFFER (at HL).
 On entry, HL=address of a print buffer terminated by hex 03. The logical
 buffer may be of any length, but only 16 characters at a time may be
 printed (physical length). On exit, if printing ended successfully, ZF=1
 and A=0. Otherwise, ZF=0 and A=error code.
**
EOS Function 18: PRINT CHARACTER (in A).
 On entry, A=character to send to the line printer. On exit, if the
 print was successful, ZF=1 and A=0. Otherwise, ZF=0 and A=error code.
**
EOS Function 19: READ 1 BLOCK.
 On entry, A=device number, BCDE=block number to read (BC=hiword, DE=
 loword), HL=data transfer address (DTA). On exit, ZF=1 if read was
 successful, ZF=0 if not.
**
EOS Function 20: READ KEYBOARD.
 On exit, if read was successful, ZF=1 and A=character typed. If not,
 ZF=0 and A=error code.
**
EOS Function 21: READ KEYBOARD STATUS BYTE.
**
EOS Function 22: READ PRINTER STATUS BYTE.
**
EOS Function 23: READ DEVICE (in A) STATUS BYTE.
 On entry, A=device number. On exit, if the device does not exist, ZF=0.
 Otherwise, ZF=1 and A=status byte from DCB.
**
EOS Function 24: READ TAPE STATUS BYTE.
**
EOS Function 25: RELOCATE PCB (to HL).
 On entry, HL=new address of PCB.
**
EOS Function 26: REQUEST DEVICE (in A) STATUS.
 On entry, A=device number. On exit, if the device exists, A=status
 returned by ADAMnet, with ZF=1 if A=128, ZF=0 otherwise. If the device
 does not exist, ZF=0 and A=1 (NON-EXISTENT DEVICE error).
**
EOS Function 27: REQUEST KEYBOARD STATUS.
 On exit, A=status. ZF=1 if A=128, otherwise ZF=0.

42 SmartBASIC 1.x User Manual Appendix 2

**
EOS Function 28: REQUEST PRINTER STATUS.
 On exit, A=status. ZF=1 if A=128, otherwise ZF=0.
**
EOS Function 29: REQUEST TAPE STATUS.
 On exit, A=status. ZF=1 if A=128, otherwise ZF=0.
**
EOS Function 30: SCAN ADAMnet FOR DEVICES.
 All DCBs are shifted up by 1 byte in memory (presumably inactivating
 them). The device count in the PCB is zeroed. ADAMnet is scanned for
 devices 1-15. If the device is active (status=128), a new 21-byte DCB
 is allocated, and the PCB device count is incremented. Otherwise,
 scanning continues. On exit, PCB byte 3 has the number of active
 devices, and the DCBs follow consecutively. Note: tape 1 (device 8)
 and tape 2 (device 24) share the same DCB.
**
EOS Function 31: SOFT INITIALIZATION (WARM BOOT).
 On entry, HL=new PCB address. This routine is like Function 15 (cold
 boot) with two exceptions. The new PCB address is supplied on entry,
 not automatically set to 65216. It also moves 318 bytes worth of PCB
 and DCBs, not 319. The significance of this latter difference is not
 clear.
**
EOS Function 32: SOFT RESET DEVICE (in A).
 On entry, A=device number. On exit, A=128 and ZF=1 if device is reset
 and ready for use. ZF=0 if device doesn't exist or is busy.
**
EOS Function 33: SOFT RESET KEYBOARD.
**
EOS Function 34: SOFT RESET PRINTER.
**
EOS Function 35: SOFT RESET TAPE.
**
EOS Function 36: START PRINT BUFFER (at HL).
 On entry, HL=address of a print buffer terminated by hex 03. The logical
 buffer may be of any length, but only 16 characters at a time may be
 printed (physical length). If start was OK, ZF=1 and A=0. Otherwise,
 ZF=0 and A=error code.
**
EOS Function 37: START PRINT CHARACTER (in A).
 On entry, A=character to print. On exit, if start was successful, ZF=1
 and A=0. Otherwise, ZF=0 and A=error code.
**
EOS Function 38: START READ 1 BLOCK.
 On entry, A=device number, BCDE=block number to read (BC=hiword, DE=
 loword), HL=data transfer address (DTA). On exit, ZF=1 if start was
 successful, ZF=0 and A=error code (1=NON-EXISTENT DEVICE, 2=DEVICE NOT
 READY) if not.
**
EOS Function 39: START READ CHARACTER DEVICE (in A).
 On entry, A=device number, DE=buffer start address, BC=buffer length.

 SmartBASIC 1.x User Manual Appendix 2 43

 On exit, ZF=1 and A=0 if start was OK. Otherwise, ZF=0 and A=error code
 (1,2).
**
EOS Function 40: START READ KEYBOARD.
 On exit, if start was successful, ZF=1 and A=1 (device number). Other-
 wise, ZF=0 and A=error code (1=NON-EXISTENT DEVICE, 2=DEVICE NOT READY).
**
EOS Function 41: START WRITE 1 BLOCK.
 On entry, A=device number, BCDE=block number to write (BC=hiword, DE=
 loword), HL=data transfer address (DTA). On exit, ZF=1 if start was
 successful, ZF=0 and A=error code if not.
**
EOS Function 42: START WRITE CHARACTER DEVICE (in A).
 On entry, A=device number, HL=buffer start address, BC=buffer length.
 On exit, ZF=1 and A=0 if start was OK. Otherwise, ZF=0 and A=error code
 (1,2).
**
EOS Function 43: SYNCHRONIZE Z80A and MASTER 6801 CLOCKS.
 On exit, ZF=1 and A=0 if synch was OK. If synch failed, ZF=0 and A=18
 (Z80A NOT SYNCHRONIZED) or A=19 (MASTER 6801 NOT SYNCHRONIZED).
**
EOS Function 44: WRITE 1 BLOCK.
 On entry, A=device number, BCDE=block number to write (BC=hiword, DE=
 loword), HL=data transfer address (DTA). On exit, ZF=1 if write was
 successful, ZF=0 and A=error code if not.
**
EOS Function 45: WRITE CHARACTER DEVICE (in A).
 On entry, A=device number, HL=buffer start address, BC=buffer length.
 On exit, ZF=1 and A=0 if write was successful, ZF=0 and A=error code
 (1,2,3) if not.
**
EOS Function 46: INITIALIZE FILE MANAGER.
 On entry, DE=address of DTA0, HL=address of FCB0. On exit, the I/O mode
 byte (24) of FCB0, FCB1 and FCB2 is set to zero.
**
EOS Function 47: INITIALIZE DIRECTORY.
 On entry, A=device number, C=number of directory blocks to initialize,
 DE=length of volume in blocks, HL=address of new volume name string. If
 the name is longer than 12 characters, it is truncated. On exit, if the
 initialization was successful, ZF=1 and A=0. Otherwise, ZF=0 and A=error
 code.
**
EOS Function 48: OPEN FILE.
 On entry, A=device number, HL=address of filename string, B=I/O mode.
 I/O mode decodes as follows: 1=read, 2=write, 3=random (read/write),
 4=execute. The file must have already been created with Fn51 (create
 file). On exit, if the open was successful, ZF=1 and A=file number.
 If the file was not opened for write alone, the DTA contains the first
 block of the file. If the opened file is only 1 block long, bit 7 of
 the FCB I/O mode byte (24) is set. If the open was unsuccessful, ZF=0
 and A=error code.

44 SmartBASIC 1.x User Manual Appendix 2

**
EOS Function 49: CLOSE FILE.
 On entry, A=file number. On exit, if the close was successful, ZF=1 and
 A=0. If the file was opened for writing, the contents of the DTA are
 written to the file, and the directory entry updated. If the close was
 unsuccessful, ZF=0 and A=error code.
**
EOS Function 50: RESET FILE.
 On entry, A=file number. On exit, if reset was successful, ZF=1 and A=0.
 The current DTA is written to the file (if opened for write), and then
 the first block of the file is read into the DTA (if not opened for
 write alone). If reset failed, ZF=0 and A=error code.
**
EOS Function 51: CREATE FILE.
 On entry, A=device number, BCDE=length of file in bytes (BC=hiword, DE=
 loword), HL=address of filename string. If BCDE=0, the file will not
 attempt to reuse deleted file space, thus allowing for maximum file size.
 On exit, if create was successful, an entry for the file is added to the
 directory, "BLOCKS LEFT" is updated, ZF=1 and A=0. Otherwise, ZF=0 and
 A=error code.
**
EOS Function 52: FIND FILE (WITH TYPE).
 On entry, A=device number, DE=address of filename string (10 characters
 max for name, then filetype byte <A,a,H,h>, then hex 03), HL=address
 of 23-byte buffer to contain the directory entry (no date bytes). The
 routine reads the directory and looks for the first match to the file
 name string. Unlike Fn69, both the 10-character filenames and the file
 type bytes must match. On exit, if a match was found, the buffer at HL
 contains the directory entry, BCDE=start block of file, and ZF=1.
 Otherwise, ZF=0 and A=error code.
**
EOS Function 53: UPDATE DIRECTORY ENTRY.
 On entry, HL=address of 23-byte buffer containing a directory entry (no
 date bytes), DE=address of filename string, and FCB0 is set up to read
 the directory block(s). On exit, if the file already exists, the entry
 is updated, A=0 and ZF=1. Otherwise, ZF=0 and A=error code.
**
EOS Function 54: READ FILE.
 On entry, A=file number, BC=number of bytes to read from the file, HL=
 address of read buffer to receive the data (not the same as file manager
 DTA). The file must already have been opened by Fn48 (open file). On
 exit, if the read was successful, ZF=1, A=0, BC=same as entry, and FCB
 bytes 33-34 point to the end of the read buffer. Otherwise, ZF=0, A=
 error code. If A=9 (BAD FILE NUMBER) or A=10 (INPUT PAST END), BC=number
 of bytes actually read from the file; for other errors, BC is unknown.
**
EOS Function 55: WRITE FILE.
 On entry, A=file number, BC=number of bytes to write to the file, HL=
 address of write buffer to send the data (not the same as file manager
 DTA). The file must already have been opened by Fn48 (open file). On
 exit, if the write was successful, ZF=1 and A=0. Otherwise, ZF=0 and

 SmartBASIC 1.x User Manual Appendix 2 45

 A=error code.
**
EOS Function 56: SET CURRENT DATE.
 On entry, B=current day, C=current month, D=current year.
**
EOS Function 57: GET CURRENT DATE.
 On exit, B=current day, C=current month, D=current year. If no date has
 been set (0/0/0), ZF=0 and A=4 (NO DATE SET error). Otherwise, ZF=1 and
 A=0.
**
EOS Function 58: RENAME FILE.
 On entry, A=device number, DE=address of old filename string, HL=address
 of new filename string. On exit, if the rename was successful, ZF=1 and
 A=0. Otherwise, ZF=0 and A=error code.
**
EOS Function 59: DELETE FILE.
 On entry, A=device number, HL=address of filename string for file to
 delete. On exit, if the delete was successful, ZF=1 and A=0. Otherwise,
 ZF=0 and A=error code.
**
EOS Function 60: READ DEVICE (in A) NODE TYPE.
 On entry, A=device number. On exit, if the device exists, ZF=1 and A=
 node type byte. If the device doesn't exist, ZF=0 and A=1 (NON-EXISTENT
 DEVICE error).

 The node type byte contains ADAMnet status information for each device.
 Unfortunately, there are 2 physical devices mapped to each node, with the
 high nibble and low nibble of the node type byte showing the status of
 the 2 devices, respectively. Devices which share DCBs also share node
 type bytes, hence tape 1 and tape 2 are shared, but disk 1 and disk 2 are
 separate. For tape 1, disk 1 and disk 2, the low nibble contains the
 status information; for tape 2, the high nibble. Returned values of the
 nibbles decode as follows:
 0 No Error (everything is OK)
 1 CRC Error (block corrupt; data failed cyclic redundancy check)
 2 Missing Block (attempt to access past physical end of medium)
 3 Missing Media (not in drive or drive door open)
 4 Missing Drive (not connected or not turned on)
 5 Write-Protected (write-protect tab covered)
 6 Drive Error (controller or seek failure)

 Why this is called the "node type" byte is anybody's guess. The name
 comes from "The Hacker's Guide to ADAM Vol.I."
**
EOS Function 61: GO TO SmartWriter.
 Bank switches to the SmartWriter ROM, then jumps to the first byte of
 code at address 256.
**
EOS Function 62: READ EOS.
 Not implemented in EOS-5; it is only a RET. Presumably this routine was
 intended to read in a fresh copy of the current operating system from the

46 SmartBASIC 1.x User Manual Appendix 2

 EOS ROM (which can hold up to 4 different 8K EOS versions). A user
 program not needing EOS routines could use the upper 8K of RAM for
 itself, then restore EOS when done. Perhaps.
**
EOS Function 63: TRIM FILE.
 On entry, A=device number, DE=address of filename to trim. On exit, any
 excess blocks allocated to the file (but not actually used by it) are
 deallocated. If the next directory entry is BLOCKS LEFT, the free blocks
 are allocated for use by subsequent files. Otherwise, the space is
 wasted.
**
EOS Function 64: CHECK IF FILE IS OPEN.
 On entry, HL=address of file name string. On exit, if the file is open,
 ZF=1, A=0 and B=lower 3 bits of the I/O mode byte from the FCB (read,
 write, execute). Otherwise, ZF=0 and A=5 (FILE NOT OPEN error).
**
EOS Function 65: READ BLOCK.
 On entry, A=device number, BCDE=block to read (BC=hiword, DE=loword), HL=
 data transfer address (DTA). On exit, if the read was successful, ZF=1.
 If not, ZF=0 and A=22 (I/O ERROR) or other error code. Oddly, this
 routine reads the block, checks the device status, then rereads the
 block. This cannot be for data integrity, as no verify operation is per-
 formed on the data (e.g., load same block into 2 places and compare
 them). The extra reading time is not noticeable from disk drives, but
 probably is significant for the tape drives. Why the routine does this I
 don't know. By comparison, Fn66 (write block) writes the block once,
 followed by a status check.
**
EOS Function 66: WRITE BLOCK.
 On entry, A=device number, BCDE=block to write (BC=hiword, DE=loword),
 HL=data transfer address (DTA). On exit, if the write was successful,
 ZF=1. If not, ZF=0 and A=22 (I/O ERROR). Unlike Fn65 (read block),
 this routine only writes the block once.
**
EOS Function 67: CHECK FILE I/O MODE.
 On entry, IX=address of FCB, HL=address of directory entry. On exit,
 IX and HL have their entry values. This routine determines if the
 attribute of the file will permit the I/O type requested. If the mode
 check was OK, ZF=1 and A=0. Otherwise, ZF=0 and A=error code (17=BAD
 I/O MODE, 20=FILE ACCESS DENIED).
**
EOS Function 68: READ DIRECTORY FOR FILE.
 On entry, A=device number, HL=address of filename string. On exit, if
 file was found, ZF=1, A=0, BCDE=start block of file, and FCB0 bytes 33-34
 contain the address of the matching entry in DTA0. Otherwise, ZF=0 and
 A=error code.
**
EOS Function 69: FIND FILE (NO TYPE).
 On entry, A=device number, DE=address of filename string (10 characters
 max for name, then filetype byte <A,a,H,h>, then hex 03), HL=address
 of 23-byte buffer to contain the directory entry (no date bytes). The

 SmartBASIC 1.x User Manual Appendix 2 47

 routine reads the directory and looks for the first match to the file
 name string. The 10-character filenames must match, but the filetype
 bytes need not. On exit, if a match was found, the buffer at HL contains
 the directory entry, BCDE=start block of file, and ZF=1. Otherwise,
 ZF=0 and A=error code.
**
EOS Function 70: POSITION FILE.
 Not implemented in EOS-5. Used in EOS-7 to move the read/write pointer
 in a random-access file. SmartBASIC 1.0 provides its own routine to do
 this; SmartBASIC 2.0 requires the EOS-7 routine.
**
EOS Function 71: EOS1.
 Not implemented in EOS-5. In EOS-7, it is a consolidated master block
 I/O routine, part of the space-saving rewrite to add a third 1024-byte
 buffer.
**
EOS Function 72: EOS2.
 Not implemented in EOS-5. In EOS-7, it is a block I/O subroutine.
**
EOS Function 73: EOS3.
 Not implemented in either EOS-5 or EOS-7. What it was supposed to do is
 anybody's guess.
**
EOS Function 74: INCORRECT EOS VERSION ERROR.
 EOS-5 leaves several of its functions unimplemented. This might not be
 true in some later, suped-up version of EOS. Programs written to utilize
 these extra functions would bomb if run under earlier, incompatible
 versions of EOS. Consequently, jump table entries for routines which
 never got off the drawing board in EOS-5 point here to return an error
 code (A=23). This allows the incompatible program to terminate nicely
 with an error message, rather than just locking up the system when the
 call to a non-existent routine sends the program counter off to never-
 never land. Under EOS-5, Fn70 (position file), Fn71 (EOS1), Fn72 (EOS2),
 Fn73 (EOS3) remain unimplemented, and are redirected here. On exit, ZF=0
 and A=23 (INCORRECT EOS VERSION error).
**
EOS Function 75: GET I/O PORTS FROM OS-7.
 The values are stored in RAM as follows:
64551 memory switch port 127
64552 ADAMnet reset port 63
64553 VDP control port 191
64554 VDP data port 190
64555 game controller 1 port 252
64556 game controller 2 port 255
64557 strobe set port 128
64558 strobe reset port 192
64559 sound port 255
**
EOS Function 76: BANK SWITCH MEMORY (to A).
 On entry, A=memory configuration (0-15). Memory configurations decode
 as follows:

48 SmartBASIC 1.x User Manual Appendix 2

 lower 32K upper 32K
 0 SmartWriter or EOS RAM
 1 RAM RAM
 2 expansion RAM RAM
 3 OS-7 plus 24K RAM RAM
 4 SmartWriter or EOS expansion ROM
 5 RAM expansion ROM
 6 expansion RAM expansion ROM
 7 OS-7 plus 24K RAM expansion ROM
 8 SmartWriter or EOS expansion RAM
 9 RAM expansion RAM
10 expansion RAM expansion RAM
11 OS-7 plus 24K RAM expansion RAM
12 SmartWriter or EOS cartridge ROM
13 RAM cartridge ROM
14 expansion RAM cartridge ROM
15 OS-7 plus 24K RAM cartridge ROM

 In order to select the SmartWriter ROM, an OUT (63),0 must be executed
first. To select the EOS ROM, use OUT (63),2.
**
EOS Function 77: PUT ASCII CHARACTER PATTERN TO VDP.
 On entry, HL=code of first character pattern to load, BC=number of
 patterns, DE=VRAM address of pattern generator table.
**
EOS Function 78: WRITE VRAM.
 On entry, DE=VRAM target address to write, HL=RAM source address of
 data, BC=number of bytes to write.
**
EOS Function 79: READ VRAM.
 On entry, DE=VRAM address to read, HL=RAM target address to receive
 data, BC=number of bytes to read.
**
EOS Function 80: WRITE VDP REGISTER 0-7.
 On entry, B=register number to write (0-7), C=data byte to send. If
 register written was 0 or 1, the data byte sent is stored in RAM at
 64865 (0) or 64866 (1).
**
EOS Function 81: READ VDP REGISTER 8.
 The value is stored at 64867.
**
EOS Function 82: FILL VRAM WITH 1 CHARACTER (in A).
 On entry, A=character to fill, DE=number of times to fill, HL=VRAM
 address to write.
**
EOS Function 83: INITIALIZE VRAM TABLE.
 On entry, A=code for which table to initialize: (0) sprite attribute
 table, (1) sprite generator table, (2) pattern name table, (3) pattern
 generator table, (4) color table. HL=VRAM address of table.
**
EOS Function 84: PUT TABLE TO VRAM.

 SmartBASIC 1.x User Manual Appendix 2 49

 On entry, A=table code (see Fn83), HL=table address in RAM, DE=entry
 number in table, IY=number of entries to be moved.
**
EOS Function 85: GET TABLE FROM VRAM.
 On entry, A=table code (see Fn83), HL=table address in RAM, DE=entry
 number in table, IY=number of entries to be moved.
**
EOS Function 86: CALCULATE OFFSET INTO SPRITE ATTRIBUTE TABLE.
 On entry, D=Y-coordinate of pattern position, E=X-coordinate. D and E
 are signed 8-bit numbers (-128 to +127). On exit, DE=(Y*32)+X.
**
EOS Function 87: POINT TO PATTERN POSITION.
 On entry, DE=signed 16-bit number (X-coordinate or Y-coordinate of
 pattern). On exit, DE ranges from -128 to +127.
**
EOS Function 88: LOAD ASCII CHARACTER SET FROM ROM TO VDP.
 Retrieves the bit patterns for ASCII characters 0-127 stored in the
 SmartWriter ROM.
**
EOS Function 89: WRITE VRAM SPRITE ATTRIBUTE TABLE.
 On entry, A=number of sprites to write, HL=address of sprite order table
 in RAM, DE=address of RAM copy of sprite attribute table.
**
EOS Function 90: READ GAME CONTROLLERS.
 On entry, IX=address of 10-byte RAM table to hold controller data (joy-
 stick, left button, right button, decoded keypad, spinner for player 2,
 followed by player 1), A=weird code for which controller(s) to read:
 BITS 1,0: 00 none
 01 controller 2
 10 controller 1
 11 controller 2, then controller 1
 BIT 7: 1 add old EOS spinner value to old in RAM data table
 0 don't update RAM spinner
 NOTE: This routine must be called TWICE in succession with the same
 controller code in order to update the RAM table ONCE.
**
EOS Function 91: UPDATE SPINNER 1 AND 2.
 Reads the game controllers, incrementing or decrementing the spinner
 counters in the EOS game controller data table, depending on which way
 the spinner was spun. Presumably this would be called by an interrupt
 routine.
**
EOS Function 92: DECREMENT LOW NIBBLE OF (HL).
 On exit, the low nibble of (HL) is decremented, A=new value of low
 nibble, and ZF=1 if it is now zero.
**
EOS Function 93: DECREMENT HIGH NIBBLE OF (HL).
 On exit, the high nibble of (HL) is decremented, A=new value of high
 nibble, and ZF=1 if it is now zero. This function is not used anywhere
 in EOS-5.

50 SmartBASIC 1.x User Manual Appendix 2

**
EOS Function 94: HIGH NIBBLE OF (HL) TO LOW NIBBLE.
 On exit, the high nibble of (HL) is moved to the low nibble, with the
 original high nibble unchanged.
**
EOS Function 95: ADD A TO WORD AT HL.
 On entry, A=data to add, (HL)=lobyte of word, (HL+1)=hibyte of word. On
 exit, A is added to word, and HL still points to the lobyte.
**
EOS Function 96: SOUND INITIALIZATION.
 On entry, B=number of voices to initialize (1-4), HL=address of song
 table with the following format:
 address of noise note table (lobyte, hibyte)
 address of noise output table (lobyte, hibyte)
 ...same for voices 1,2,3.
 On exit, the current note of each voice in the output table and the saved
 sound control byte are set to 255, and the EOS voice table pointers are
 set to 58342 (address of another 255). The sound control byte is used to
 prevent identical data from being sent to the noise channel (which would
 cause an audible click and "ruin" white noise).
**
EOS Function 97: SOUND OFF.
 On exit, the three voices and the noise channel are turned off.
**
EOS Function 98: START SONG.
 On entry, B=number of the song to start. On exit, the first note of that
 song is ready to play.
**
EOS Function 99: SOUND.
 On entry, all necessary noise and voice tables must have been properly
 set up and initialized. Steps through each table once, playing the
 current note, updating as necessary.
**
EOS Function 100: END SPECIAL EFFECTS NOTE.
 On entry, IX=output table address, HL=address of next special effects
 note, DE=?.
**

 SmartBASIC 1.x User Manual Appendix 3 51

APPENDIX 3: EOS-5 TECHNICAL NOTES.

 The following information is provided for the benefit of programmers who
 wish to use CALL EOS for operating system functions. This information
 was compiled from "The Hacker's Guide to ADAM Vol. I" by Peter and Ben
 Hinkle (1986), and from "The EOS-5 Technical Reference" by Richard F.
 Drushel (1991). See Appendix 2: EOS-5 Function Calls 0-100 for a
 summary of the EOS-5 operating system functions.

PROCESSOR CONTROL BLOCK (PCB).**

 The PCB is a 4-byte block, usually at address 65216 but relocatable, used
 by the master 6801 ADAMnet controller to keep track of devices.

offset meaning
 0 processor status/request byte
 1-2 PCB start address (lobyte, hibyte)
 3 number of active devices (number of DCBs)

 Reading byte 0 returns status information from ADAMnet; the meaning of
 individual status bits is uncertain. Writing to byte 0 requests the
 following operations:

data function
 1 synchronize the Z80 clock
 2 synchronize the master 6801 clock
 3 relocate PCB

DEVICE CONTROL BLOCKS (DCBs).***

 DCBs are 21-byte blocks, beginning at address 65220, used by EOS to
 communicate with ADAMnet devices. Fifteen DCBs are allocated; the
 number of active DCBs, however, depends upon how many valid devices
 were attached to ADAMnet at system startup. Active devices are
 allocated DCBs in order of primary device number, 1 through 15. (Device
 numbers may be greater than 15, however. See tape DCB discussion.)

offset meaning
 0 device status/request byte
 1-2 buffer start address (lobyte, hibyte)
 3-4 buffer length (lobyte, hibyte)
 5-8 block number accessed (loword, hiword in lobyte, hibyte format)
 9 high nibble of device number
10-15 always zero (unknown purpose)
 16 device number
17-18 maximum block length
 19 device type (0 for character device, 1 for block device)
 20 node type (returns ADAMnet drive error codes--see Function 60)

52 SmartBASIC 1.x User Manual Appendix 3

 Reading byte 0 returns status information from ADAMnet; the meaning of
 individual status bits is uncertain. Writing to byte 0 requests the
 following operations:

data function
 1 return current status
 2 soft reset
 3 write
 4 read

 ADAMnet device numbers decode as follows:

number device type
 0 master 6801 ADAMnet controller -
 1 keyboard 0
 2 ADAM printer 0
 4 disk drive 1 1
 5 disk drive 2 1
 8 tape drive 1 1
 9 ADAM hard drive EOS partition volume 1 1
 13 ADAM parallel interface 0
 14 ADAM serial interface 0
 15 --unknown-- 0
 24 tape drive 2 1
 25 ADAM hard drive EOS partition volume 2 1
 26 expansion RAM disk drive -

Device Notes:

 0 The master 6801 uses the PCB as its DCB.

 8,24 Tape 1 and tape 2 share the same DCB.

 9,25 According to Ron Collins, two volumes of the 2.5 megabyte EOS
 partition of a planned 5 megabyte ADAM hard disk drive, never
 built. These correspond to D3 and D4 in SmartBASIC. Like tape
 1 and tape 2, they would have shared the same DCB.

 13 The prototype ADAM parallel interface, never released.
 SmartBASIC 2.0 has routines to access it as PR #4.

 14 The prototype ADAM serial interface, never released. Smart-
 BASIC 2.0 has routines to access it as IN #2 and PR #2.

 15 This always appears as the last DCB, and always with a not-
 ready status. What it is for is anybody's guess.

 26 Allocated as an expansion RAM disk drive, but never used by
 Coleco. Third-party developers (e.g., Walters Software) have
 implemented it, using modified EOS drivers, but *NOT* as a
 true ADAMnet device.

 SmartBASIC 1.x User Manual Appendix 3 53

EOS DIRECTORY STRUCTURE.**

 Each entry consists of 26 bytes. Directories begin at block 1, and may
 be up to 255 blocks long. Entries for files have the following format:

bytes 0-11 Filename specification. A valid filename consists of up to 10
 characters, followed by a type byte, terminated with hex 03.
 The type byte can be A, a, H, or h (ASCII or hex, lowercase for
 backups). Executable binary files are usually type hex 02,
 which appears as a smiley face.
 12 File attribute. Set bits in the attribute byte map as follows:
 0 not a file (used for BLOCKS LEFT)
 1 execute protected (can't be opened for execution)
 2 deleted file
 3 system file (hidden from SmartBASIC CATALOG)
 4 user file
 5 read-protected
 6 write-protected (read only)
 7 delete protected
 13-16 Start block. Stored loword, hiword.
 17-18 Allocated length. Includes any unused "holes" which may be
 tacked on at the end.
 19-20 Used length. Actual length of file, discounting unused "holes"
 at the end.
 21-22 Number of bytes used in last allocated block of file. Thus, to
 compute file length in bytes, (allocated-used-1)*1024+lastbyte.
 23 Creation year. There is no set rule for how to represent the
 year. One common method is (year-1900); thus 1987 would be hex
 57. This wastes the values hex 00-52 (since ADAM appeared in
 1983), unless these are interpreted as 2000+value (as in SB1.x).
 24 Creation month. Range hex 01-0C.
 25 Creation day. Range hex 01-1F.

 Four special entries are found in the directory of every EOS disk. The
 first three are always:

 VOLUME. bytes 0-11 volume name
 12 attribute=hex 80 (delete protected)
 13-16 hex 55AA00FF directory check for EOS format
 17-18 disk size in blocks
 BOOT. bytes 0-11 BOOT
 12 attribute=hex 88 (delete protected, system
 file)
 17-18 allocated length=1 block
 19-20 used length=1 block
 21-22 lastbyte=0 (means 1024, i.e., the whole block)
 DIRECTORY. bytes 0-11 DIRECTORY
 12 attribute=hex C8 (delete and write protected,
 system file)
 13-16 start block (default=1)
 17-18 maximum size of directory in blocks

54 SmartBASIC 1.x User Manual Appendix 3

 19-20 current size of directory in blocks

 The last entry of every directory in EOS-5 is:

 BLOCKS LEFT. bytes 0-11 BLOCKS LEFT
 12 attribute=hex 01 (not a file)
 13-16 first free block in largest contiguous
 cluster of free blocks at the end of the
 storage medium
 17-18 total number of free blocks (contiguous or
 not)
 19-20 used length always 0
 23-25 EOS version date=hex 570711
 This date does not conform to the pattern
 described above. In "The Hacker's Guide To
 ADAM Vol. II", Ben Hinkle suggests that this
 should be read as 7/11/1957, perhaps the
 birthdate of one of the programmers.

 Note: EOS-7 does not use BLOCKS LEFT to keep track of free blocks.

EOS FILE CONTROL BLOCK (FCB) STRUCTURE.***************************************

 EOS sets up areas of RAM to store data about open files, called file
 control blocks (FCBs). EOS-5 has 3 FCBs: 1 for the system, and 2 for
 user files (3 in EOS-7). FCBs are contiguous 35-byte blocks set up as
 follows:

 bytes 0-22 from EOS directory entry (no date bytes)
 23 I/O mode byte. The set bits are mapped as follows:
 7 current block in buffer is the last block
 of the file
 6 data in buffer is waiting to be written
 to the file. Makes EOS write the data
 before loading a new block into the buffer.
 5 file won't reuse deleted file space
 4 unused
 3 unused
 2 open for execute
 1 open for write
 0 open for read
 Bits 5,2,1,0 are set by the caller; bits 7,6 are set
 and used internally by EOS. Files can be opened for
 read, write, read-write or execute; an error results
 if read, write and execute are simultaneously set.
 25-28 current block for I/O. Loword, hiword.
 29-32 last block of file. Loword, hiword.
 33-34 address of I/O buffer (DTA). This area is also used in
 EOS-7 by Fn70 (POSITION FILE) and Fn50 (RESET FILE) to
 store the byte offset into the current DTA.

 SmartBASIC 1.x User Manual Appendix 3 55

EOS ERROR CODES.**

 These are returned in A with ZF=0 upon return after an error. There is
 no official Coleco nomenclature for these error codes, since there was
 never any software access to EOS. I have selected likely names based
 upon what seems to be going wrong when they are issued. In some cases,
 I have provided alternate names which may be more meaningful or
 explanatory.

code meaning
 0 [No Error]
 1 Non-Existent Device
 2 Device Not Ready
 3 I/O Not Done (or I/O Not Over)
 4 No Date Set
 5 No More Directory (or File Not Found) [Fn68]
 File Not Open [Fn64]

 Due to a seeming typographical error by a programmer, two different
 errors are allocated to code 5, while code 15 is unused, not even
 mentioned. SmartBASIC 1.0 interprets EOS error 5 as "File Not Found",
 so this suggests that "File Not Open" should have been assigned to
 error 15.

 6 File Already Exists
 7 Too Many Open Files [SmartBASIC calls this "No Buffers Available"]
 8 Match Not Found
 9 Bad File Number
 10 I/O Past End
 11 File Too Big
 12 Directory Full
 13 No More Room (or Disk Full)

 SmartBASIC does not differentiate between errors 12 and 13, lumping them
 together under "No More Room".

 14 Bad File Name
 15 [unused; see error 5]
 16 File Locked (or File Write Protected)
 17 Bad I/O Mode
 18 Z80A Not Synchronized
 19 Master 6801 Not Synchronized
 20 File Access Denied
 21 [unknown, unimplemented]
 22 I/O Error
 23 Incorrect EOS Version
 24 Non-EOS Volume

56 SmartBASIC 1.x User Manual Appendix 4

Appendix 4: External Terminal Emulations.

 If you have a serial terminal not currently supported under SmartBASIC
1.x, you can create an emulation data file specific for your terminal, and
install it at startup as an External Emulation. The internal format for all
SmartBASIC 1.x terminal emulation data tables is as follows:

byte 0: xx offset to 12 (clear screen and home cursor)
 xx offset to 22 (erase to right of screen)
 xx offset to 24 (erase to bottom of screen)
 xx offset to 28 (absolute cursor move x,y)
 xx offset to 128 (home cursor)
 xx offset to 151 (delete character to right of cursor)
 xx offset to INVERSE ON
 xx offset to INVERSE OFF
 xx offset to FLASH ON
 xx offset to FLASH OFF
byte 10: -- data for 12
 -- data for 22
 -- data for 24
 -- data for 28
 -- data for 128
 -- data for 151
 -- data for INVERSE ON
 -- data for INVERSE OFF
 -- data for FLASH ON
 -- data for FLASH OFF

 Offset is the number of bytes from the *BEGINNING OF THE TABLE* to the
data for the particular control character or function. Data is in the format
number of data bytes, data. If the terminal is incapable of a given control
character function, set the length byte to 0 and do not supply any data bytes.

 The location of each terminal emulation data table in RAM is stored in
a 16-byte table of 2-byte addresses (lobyte, hibyte). The default table is
pointed to by ADDR(6). The table currently in use is pointed to by ADDR(7),
and may be changed by changing ADDR(7) to point at a user-supplied table
anywhere in memory. At startup, however, both ADDR(6) and ADDR(7) point to
the same default table. The value of TERM*2 is the offset into this table,
pointing at the address of the data for the TERMth emulation:

 lobyte hibyte
ADDR(7): xx xx ;address of TERM=0 emulation
 xx xx ;1
 xx xx ;2
 xx xx ;3
 xx xx ;4
 xx xx ;5
 xx xx ;6
 xx xx ;7

 SmartBASIC 1.x User Manual Appendix 4 57

 In the default table, there are only three unique addresses. The first
entry points to the internal Dumb TTY emulation data, the second to the
internal Heath 19, and the third through eighth to a reserved area where
emulations 2-7 are loaded by BOOT.SYS at startup, *IF* TERM=2, 3, 4, 5, 6, or
7 has been specified in CONFIG.SYS. If not, this area contains a duplicate of
the Dumb TTY emulation data. This is done to conserve space.

 In a user-supplied table, ADDR(7) not equal to ADDR(6), all eight entries
may have unique addresses, and point to eight different emulation data tables.
The programmer must supply all the necessary data, and insure that the pointer
table entry addresses are correct.

 To create an External Emulation installable by BOOT.SYS at startup, first
create the data table in the proper format. Two examples given below are for
SmartBASIC 1.x's internal Dumb TTY and Heath 19 emulations:

 Dumb TTY CHR$(n) Heath 19
byte 0: 10 12 10 ;offsets
 10 22 13
 10 24 16
 10 28 19
 10 128 22
 10 151 25
 10 INVERSE ON 28
 10 INVERSE OFF 31
 10 FLASH ON 34
 10 FLASH OFF 37
byte 10: 0 ;none 2,27,69 ;data
 2,27,75
 2,27,74
 2,27,89 ;x,y supplied by SB1.x
 2,27,72
 2,27,78
 2,27,112
 2,27,113
 2,27,112 ;no FLASH, but uses
 2,27,113 ;INVERSE ON and OFF

 Next, find the address of the emulation data pointer table. For the
default table, the value of ADDR(6) has the address. Since emulations 2-7
in the default setup all have the same pointer address, you need only look
at the third entry (instead of the eighth, TERM=7 is eighth entry). Get
this pointer address, and *THAT* is where you can POKE the emulation data
table into memory. Without recourse to the actual, version-dependent
addresses, here is how you find where to start POKEing:

 100 base=ADDR(6): lobyte=PEEK(base+4): hibyte=PEEK(base+5)
 110 address=lobyte+256*hibyte: IF address<0 THEN address=address+65536

 Once the data is in memory, simply BSAVE it, beginning at address, with
length equal to how many bytes are in the table:

58 SmartBASIC 1.x User Manual Appendix 4

 500 HTAB 1: PRINT CHR$(4);"BSAVE ";name$;",A";STR$(address);",L";
 STR$(length)

 Of course, you should test your emulation data before saving it. Set
TERM=7 and go to TEXT80 and make sure that the arrow keys, etc., all work as
they are supposed to.

 Next, RUN EDIT.SYS and select External Emulation from the proper menu.
At the prompt, enter the name of the emulation data file you BSAVEd. After
saving the new configuration, reboot SmartBASIC 1.x. TEXT80 should now
correctly access the external emulation.

 NOTE: Only terminals which have Heath 19-type absolute cursor position-
ing can be used successfully with SmartBASIC 1.x. The Heath-type coding is:

<ESCAPE> <SOME CHARACTER SEQUENCE> <line+31> <column+31>

There can be as many control characters as necessary to specify the absolute
cursor positioning mode, but the actual positioning must use the +31 format.

 SmartBASIC 1.x User Manual Appendix 5 59

APPENDIX 5: LIST OF RESERVED WORDS.

 The following is a list of reserved words in SmartBASIC 1.x. These may
not be used as regular variable names, although there is no prohibition upon
a variable name containing a reserved word as *PART* of the name. For
example, window=5 is an illegal statement (WINDOW is a reserved word), whereas
window9=5 is acceptable.

 Note: the words RENUM, SOUND, SPDEFINE, SPDRAW and SPXDRAW are reserved
for possible use in future versions of SmartBASIC 1.x.

 & DE INT POP SPDRAW
 ? DEF INVERSE POS SPEED
 ABS DEL IX POSITION SPXDRAW
 ADDR DELETE IY PR SQR
 AF DIM LEFT PRINT STEP
 AND DRAW LEN PRN STOP
 APPEND DSIZE LET PROMPT STORE
 ASC END LINPUT PRWIDTH STR
 AT EOS LIST PUT STRING
 ATN ERRNUM LOAD RANDOMIZE TAB
 BC EXP LOCATE READ TAN
 BEEP FLASH LOCK RECALL TERM
 BIT FN LOG RECOVER TEXT
 BLOAD FOR LOMEM REM TEXT31
 BLREAD FORMAT MEM RENAME TEXT40
 BLWRITE FP MERGE RENUM TEXT80
 BREAK FRE MID RES THEN
 BRUN GET MOD RESTORE TIME
 BSAVE GOSUB MON RESUME TO
 CALL GOTO NEW RETURN TRACE
 CATALOG GR NEXT RIGHT UNLOCK
 CF HCOLOR NOBREAK RND USR
 CHR HDRV NOMERGE ROT VAL
 CLEAR HEX NOMON RUN VER
 CLK HGR NORMAL SAVE VLIN
 CLOSE HGR2 NOT SCALE VPOS
 CLREAD HIMEM NOTRACE SCRN VTAB
 CLRERR HL ON SER WAIT
 CLS HLIN ONERR SERIAL WEND
 CLWRITE HOME OPEN SET WHILE
 COLOR HPLOT OR SGN WIDTH
 CONT HTAB OUT SHLOAD WINDOW
 COS IF PDL SIN WRITE
 CPL IN PEEK SOUND XDRAW
 DATA INIT PLOT SPC XOR
 DATE INPUT POKE SPDEFINE ZF

60 SmartBASIC 1.x User Manual Appendix 6

Appendix 6: Memory Maps.

 On the following pages are detailed memory maps for the Coleco ADAM
computer running the SmartBASIC 1.x interpreter under the EOS-5 operating
system.

 The first map is of the 64K RAM directly addressable by the Z80 micro-
processor. Where possible, segment boundaries are given in terms of global
symbols rather than absolute addresses. In cases where both an absolute and
a symbolic address are given, it is imperative that the programmer employ the
symbolic reference, to maintain portability between, and compatibility with,
current and future versions of the interpreter and/or EOS. While published
accounts of the SmartBASIC 1.0 memory map give the absolute addresses of many
pointers to interpreter parameters (such as the location of the tokenized
program, line number table, start of string space, etc.), programmers should
AVOID using these addresses.

 The remaining maps show VRAM use by SmartBASIC 1.x in the 6 possible
video modes. Unlike the microprocessor memory maps, these maps show segment
boundaries in page form, rather than byte address form. (One page equals 256
bytes, thus page 1 is address 256.) Byte offsets into a page are shown in the
form +offset. Hence, 31+128 means page 31, byte offset 128. For detailed
information about ADAM's video chip, see either "TMS9918A/28A/29A Video
Display Processors Data Manual" or "Video Display Processors Programmer's
Guide", both by Texas Instruments (1984).

 64K Map Notes:

 (1) The first 7 RST vectors contain 3-byte JP xxxx instructions,
 where xxxx is the address of a RET instruction.

 (2) The RST 38H vector contains a 3-byte JP yyyy instruction, where
 yyyy is the address of a RETI instruction.

 (3) Maskable interrupts are always *ENABLED* in SmartBASIC 1.x. During
 internal bank-switching routines (such as required for the enhanced
 PEEK and POKE commands), they are temporarily disabled (DI), but
 are always re-enabled (EI) when the normal RAM configuration is
 restored. Consequently, a single DI instruction in a user-supplied
 machine code routine can *NOT* guarantee that the maskable
 interrupts remain disabled. A hardware device requiring the
 maskable interrupt (such as the spinner on the Super-Action Game
 Controller, or the MIDI interface) should "enable/disable" the
 interrupt by changing the JP yyyy at address 57-58 to point to
 either the handler code or to a RETI instruction, respectively.

 (4) User machine code routines may be placed in DTA2 (pointed to by
 PEEK(65023)+2048) as long as no more than *ONE* file is open at any
 one time. If the main program is large, this conserves program
 space for the SmartBASIC interpreter.

 SmartBASIC 1.x User Manual Appendix 6 61

 (5) A small area below address 32768 is reserved for user-supplied
 machine code routines which involve bank-switching out the upper
 32K of RAM. This area is provided as a courtesy to programmers
 who, for performance reasons, choose not to use the enhanced PEEK
 command to access alternate upper 32K memory spaces. Sufficient
 space is allocated for the necessary code and for a buffer to hold
 retrieved data. Remember that switching out a bank of RAM makes
 all programs and data in that bank *INVISIBLE* to the Z80 until it
 is switched back in.

62 SmartBASIC 1.x User Manual Appendix 6

 SmartBASIC 1.x User Manual Appendix 6 63

64 SmartBASIC 1.x User Manual Appendix 6

 SmartBASIC 1.x User Manual Appendix 6 65

66 SmartBASIC 1.x User Manual Index of SB1.x Commands and Functions

INDEX OF SmartBASIC 1.x COMMANDS AND FUNCTIONS.

COMMANDS. FUNCTIONS.
 page page
&......................................24 ADDR(arg).....................20
ADDR(arg)=address......................20 AF............................15
AF=value...............................15 AND(value1,value2)............12
BC=value...............................15 BC............................15
BEEP...................................23 BIT(value,bit)................12
BLREAD drive,block,address.............29 CF............................15
BLWRITE drive,block,address............29 CLK...........................13
CALL EOS(arg)..........................15 COLOR(arg)....................27
CLREAD.................................13 CPL(value)....................12
CLS....................................14 DATE(arg).....................13
CLK=value..............................13 DATE$.........................13
CLWRITE................................13 DE............................15
COLOR(arg)=value.......................27 DSIZE(arg)....................29
DATE mm\dd\yyyy [\ww]..................13 ERRNUM [(dummy)]..............17
DE=value...............................15 FRE [(dummy)].................20
DSIZE(arg)=value.......................29 HDRV..........................23
FORMAT drive...........................30 HEX$(value)...................12
HL=value...............................15 HL............................15
IN variable,port.......................24 IX............................15
IX=value...............................15 IY............................15
IY=value...............................15 MEM(arg)......................20
LINPUT ["prompt";] var$ [,var2$...]...23 MOD(value1,value2)............12
LOCATE line,column.....................14 OR(value1,value2).............12
MERGE..................................30 PEEK(address [,latch])........21
NOMERGE................................30 POS [(dummy)].................14
OUT port,value.........................24 PROMPT........................23
POKE address,value [,latch]............21 RES(value,bit)................12
PR #arg................................25 RND [(positive argument)].....24
PRN #arg...............................25 ROT...........................24
PROMPT=value...........................23 SCALE.........................24
PRWIDTH=value..........................25 SER(arg)......................28
PUT value..............................23 SER(port,parameter)...........28
RANDOMIZE [seed1,seed2]................23 SET(value,bit)................12
RESTORE [line number]..................26 SPC$(arg).....................24
RESUME [line number]...................17 SPEED.........................24
RETURN [line number]...................26 STRING$(count,value)..........24
SER(arg)=value.........................28 TERM..........................32
SERIAL port,baudrate,stats.............28 TIME(arg).....................13
TERM=value.............................32 TIME$.........................13
TEXT...................................31 VER(arg)......................24
TEXT31.................................31 VPOS [(dummy)]................14
TEXT40.................................31 WIDTH(arg)....................25
TEXT80.................................31 XOR(value1,value2)............12
TIME hh:mm:ss..........................13 ZF............................15
WEND...................................26
WHILE condition........................26
WINDOW y1,x1 TO y2,x2..................33

	cover
	manual

